DOI QR코드

DOI QR Code

Trends in Wavelength-Tunable Laser Development and Applications

파장가변 광원 개발 동향 및 응용

  • O.K. Kwon ;
  • K.S. Kim ;
  • Y.-H. Kwon
  • 권오기 (광융합부품연구실) ;
  • 김기수 (광융합부품연구실) ;
  • 권용환 (광무선연구본부 )
  • Published : 2024.02.01

Abstract

The integration of high-capacity terrestrial networks with non-terrestrial communication using satellites has become essential to support seamless low-latency services based on artificial intelligence and big data. Tunable light sources have been instrumental in resolving the complexity of channel management in wavelength division multiplexing (WDM) systems, contributing to increased network flexibility and serving as optical sources for long-distance coherent systems. Recently, these light sources have been applied to beam-steering devices in laser communication and sensing applications across ground, aerial, and satellite transport. We examine the utilization and requirements of tunable lasers in WDM networks and describe the relevant development status. In addition, performance requirements and development directions for tunable lasers used in optical interference systems and beam-steering devices are reviewed.

Keywords

Acknowledgement

본 연구는 2022년도 정부(과학기술정보통신부)의 재원으로 정보통신평가원의 지원을 받아 수행된 연구임[No. 2020-0-00847 (5G+ 기지국 프론트홀 기술 개발), No. 2022-0-00584 (400Gbps 코히어런트 광트랜시버 개발)].

References

  1. http://www.koit.co.kr/news/articleView.html?idxno=118231 
  2. 김광준 외, "광전송 기술 및 동향," 전자통신동향분석, 제27권 제2호, 2012, pp. 99-108. 
  3. 백용순, "대용량 광통신부품 기술동향," 한국광학회지, 제24권 제6호, 2013, pp. 297-310. 
  4. 윤천주 외, "SDN 구현을 위한 광통신 핵심 요소 기술," 전자통신동향분석, 제28권 제4호, 2013, pp. 43-56. 
  5. 권오균 외, "유무선가입자 광부품 기술 및 산업동향," 전자통신동향분석, 제31권 제6호, 2016, pp. 21-30. 
  6. 한영탁 외, "데이터센터 통신용 광소자 및 광부품 기술 동향," 전자통신동향분석, 제37권 제2호, 2022, pp. 42-52. 
  7. 장순혁 외, "5G 모바일 프론트홀 광전송 기술 동향," 전자통신동향분석, 제37권 제3호, 2022, pp. 23-32. 
  8. W. Ma et al., "Practical two-dimensional beam steering system using an integrated tunable laser and an optical phased array," Appl. Opt., vol. 59, no. 32, 2020, pp. 9985-9994. 
  9. A. Khachaturian et al., "Achieving full grating-lobe-free field of view with low-complexity co-prime photonic beamforming transceivers," Photonics Res., vol. 10, no. 5, 2022, pp. A66-A77. 
  10. C. Yang et al., "Advances in silicon-based, integrated tunable semiconductor lasers," Nanophotonics, vol. 12, no. 2, 2023, pp. 197-217. 
  11. ITU-T Recommendation, G.694.1: Spectral grids for WDM applications: DWDM frequency grid, 2020. 
  12. ITU-T Recommendation, G.9802.1: Wavelength division multiplexed passive optical networks (WDM PON): General requirements, 2021. 
  13. Common Public Radio Interface (CPRI) Specification V7.0, 2015. 
  14. eCPRI Interface Specification V2.0, Common Public Radio Interface: eCPRI Interface Specification, 2019. 
  15. ITU-T Recommendation, G.694.2: Spectral grids for WDM applications: CWDM wavelength grid, 2003. 
  16. 한국정보통신기술협회(TTA), TTAE.KO-03.0022/R2: 다수의 서브 채널을 갖는 다채널 CWDM 광인터페이스, 2017. 
  17. https://www.etnews.com/20220323000165 
  18. 권오기 외, "전계흡수 변조기가 집적된 양방향 파장가변 분포반사기 레이저 다이오드," Optics and Photonics Congress, 2021, article no. MP-II.005. 
  19. 권오기 외, "파장당 50 Gbps PAM4 신호를 지원하는 12채널 Tunable DBR-EAM," 광전자 및 광통신 학술회의(COOC), 2021, article no. WP-CH3.01. 
  20. O.K. Kwon et al., "100-Gb/s/λ PAM-4 EAM-integrated DBR-LD supporting multiple sub-channels within 1.29 ㎛ window," J. Lightw. Technol., vol. 41, no. 18, 2023, pp. 6015-6020. 
  21. 이동훈 외, "데이터센터 내부 통신용 200Gbps PAM4 EML 광원개발," 광자기술학회(PC), 2022, pp. 1-3. 
  22. https://www.o-ran.org/
  23. http://www.openroadm.org/
  24. https://www.oiforum.com/technical-work/hot-topics/400zr-2/
  25. https://www.openzrplus.org/about-us/
  26. https://www.openzrplus.org/documents/
  27. https://www.oiforum.com/wp-content/uploads/2019/01/OIF-Micro-ITLA-01.1.pdf
  28. https://www.furukawa.co.jp/en/release/2019/comm_190920.html
  29. https://effectphotonics.com/wp-content/uploads/2023/10/pTLA-Brochure_V12_A4_digital.pdf
  30. ITU-T Recommendation, G.989.2: 40-Gigabit- capable passive optical networks(NG-PON2): Physical media dependent(PMD) layer specification, 2014. 
  31. L.A. Coldren et al.,"Tunable semiconductor lasers: A tutorial," J. Lightw. Technol., vol. 22, no. 1, 2004, pp. 193-202. 
  32. L.A. Coldren et al., "A review of photonic systems-on-chip enabled by widely tunable lasers," IEEE J. Quantum Electron., vol. 58, no. 4, 2022, article no. 6300110. 
  33. L. Han et al., "Electroabsorption-modulated widely tunable DBR laser transmitter for WDM-PONs," Opt. Express, vol. 22, no. 24, 2014, pp. 30368-30376. 
  34. O.K. Kwon, et al., "Proposal of novel structure for wide wavelength tuning in distributed Bragg reflector laser diode with single grating mirror," Opt. Express, vol. 26, no. 22, 2018, pp. 28704-28712. 
  35. 박수익 외, "DBR-LD의 파장가변 방식별 파장스위칭 시간 평가," 광자기술학회(PC), 2023, pp. 1-3. 
  36. S.I. Park et al., "Heater-tuned DBR laser diode for high thermal efficiency," in Proc. ISLC 2022, (Matsue, Japan), Oct. 2022, article no. TuP-31. 
  37. C.W. Lee et al., "Wide-wavelength-tunable distributed Bragg reflector laser diode with high thermal efficiency," Opt. Express, vol. 31, no. 20, 2023, pp. 32126-32133. 
  38. O.K. Kwon et al., "Proposal of novel structure for wide wavelength tuning in distributed Bragg reflector laser diode with single grating mirror," Opt. Express, vol. 26, no. 22, 2018, pp. 28704-28712. 
  39. Y. Ueda et al., "High-speed tunable laser based on electro-optic effect for wavelength switching," NTT Technical Review, vol. 20, no. 4, 2022, pp. 65-73. 
  40. B.R. Bennett et al., "Carrier-induced change in refractive index of InP, GaAs, and InGaAsP," IEEE J. Quantum Electron., vol. 26, no. 1, 1990, pp. 113-122. 
  41. M.-C. Amann et al., "Linewidth broadening by 1/f noise in wavelength-tunable laser diodes," Appl. Phys. Lett., vol. 70, no. 12, 1997, pp. 1512-1514. 
  42. H. Ishii et al., "Spectral linewidth reduction in widely wavelength tunable DFB laser array," IEEE J. Sel. Top. Quantum Electron., vol. 15, no. 3, 2009, pp. 514-520. 
  43. K. Takabayashi et al., "Mode-hop-free and electrically wavelength-tunable laser array with 39.5 nm tuning range using tunable distributed amplification DFB structure," in Proc. ISLC 2006, (Kohala Coast, HI, USA), Sept. 2006, pp. 27-28. 
  44. N. Nunoya et al., "110-channel operation with a 50-GHz grid in mode-hop-free tunable distributed amplification(TDA-) DFB laser array," in Proc. ISLC 2008, (Sorrento, Italy), Sept. 2008, pp. 143-144. 
  45. H. Arimoto et al., "Wavelength-tunable short-cavity DBR laser array with active distributed Bragg reflector," J. Lightw. Technol., vol. 24, no. 11, 2006, pp. 4366-4371. 
  46. O.K. Kwon et al., "Widely tunable multi-channel grating cavity laser based on a light-deflector," in Proc. OFC/NFOEC 2006, (Anaheim, CA, USA), Mar. 2006, pp. 1-3. 
  47. F. Liu et al., "Investigation into the phase noise of modulated grating Y-branch lasers," IEEE J. Select. Topics Quantum Electron., vol. 23, no. 6, 2017, article no. 1801009. 
  48. V. Jayaraman et al., "Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings," IEEE J. Quantum Electron., vol. 29, no. 6, 1993, pp. 1824-1834. 
  49. A.J. Ward et al., "Widely tunable DS-DBR laser with monolithically integrated SOA: Design and performance," IEEE J. Sel. Topics Quantum Electron., vol. 11, no. 1, 2005, pp. 149-156. 
  50. T. Ishikawa et al., "Narrow spectral linewidth full-band wavelength tunable lasers for digital coherent communication systems," Tech. Rev., no. 77, 2013, pp. 54-58. 
  51. M. Oberg et al., "74nm wavelength tuning range of an InGaAsP/InP vertical grating assisted codirectional coupler laser with rear sampled grating reflector," IEEE Photon. Technol. Lett., vol. 5, no. 7, 1993, pp. 735-737. 
  52. J.-O. Wesstrom et al., "Design of a widely tunable modulated grating Y-branch laser using the additive vernier effect for improved super-mode selection," in Proc. ISLC 2022, (Garmisch, Germany), Dec. 2002, pp. 99-100. 
  53. M. Nishita et al., "The development of a nano-ITLA for digital coherent datacenter interconnects," Furukawa Electric Rev., no. 52, 2021, pp. 44-48. 
  54. M.A. Tran et al., "Ring-resonator based widely-tunable narrow-linewidth Si/InP integrated lasers," IEEE J. Sel. Top. Quantum Electron., vol. 26, no. 2, 2020, article no. 1500514. 
  55. http://www.opticsjournal.com/tla.htm 
  56. https://www.giikorea.co.kr/report/dbmr996871-global-tunable-laser-market-industry-trends.html?CODE=dbmr996871-global-tunable-laser-market-industry-trends.html&TYPE=0 
  57. W. Weser et al., "Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second," Opt. Express, vol. 18, no 14, 2010, pp. 14685-14704. 
  58. D. Derickson et al., "SGDBR single-chip wavelength tunable lasers for swept source OCT," Proc. of SPIE, vol. 6847, 2008, article no. 68472P-3. 
  59. N. Fujiwara, "143-nm Swept Source for OFDR-OCT Utilizing TDC-SSG-DBR Lasers," NTT Technical Review, vol. 7, no. 1, 2009, pp. 1-7. 
  60. D. Choi et al., "Tuning of successively scanned two monolithic Vernier-tuned lasers and selective data sampling in optical comb swept source optical coherence tomography," Biomed. Opt. Express, vol. 4, no. 12, 2013, pp. 2962-2987. 
  61. https://www.photonics.com/Articles/Integrated_Photonics_Looks_to_Advance_Safety_for/a64791 
  62. M.E. Warren, "Automotive LIDAR technology," in Proc. 2019 Symp. VLSI Circuits, (Kyoto, Japan), June 2019, pp. 254-255. 
  63. X. Zhang, "Laser frequency sweep linearization by iterative learning pre-distortion for FMCW LiDAR," Opt. Express, vol. 27, no. 7, 2019, pp. 9965-9974. 
  64. G. Zhang et al., "Demonstration of high output power DBR laser integrated with SOA for the FMCW LiDAR system," Opt. Express, vol. 30, no. 2, 2022, pp. 2599-2609. 
  65. L. Chuxin et al., "Hybrid integrated frequency-modulated continuous-wave laser with synchronous tuning," J. Lightw. Technol., vol. 40, no. 16, 2022, pp. 5636-5644. 
  66. J.K. Doylend, "Hybrid III/V silicon photonic source with integrated 1D free-space beam steering," Opt. Express, vol. 37, no. 20, 2012, pp. 4257-4259. 
  67. W. Guo, "Two-dimensional optical beam steering with InP-based photonic integrated circuits," IEEE J. Sel. Top. Quantum Electron., vol. 19, no. 4, 2013, article no. 6100212. 
  68. J.C. Hulme, "Fully integrated hybrid silicon two dimensional beam scanner," Opt. Express, vol. 23, no. 5, 2015, pp. 5861-5874. 
  69. D. Shin et al., "Commoditizing the uncommoditized: chip-scale LiDAR," Proc. of SPIE, vol. 12007, 2002, article no.1200708. 
  70. M. Nickerson et al, "Gallium arsenide optical phased array photonic integrated circuit," Opt. Express, vol. 31, no. 17, 2023, pp. 27106-27122.