DOI QR코드

DOI QR Code

Discontinuous PWM Scheme for Switching Losses Reduction in Modular Multilevel Converters

  • Jeong, Min-Gyo (Department of Electrical and Computer Engineering, Ajou University) ;
  • Kim, Seok-Min (Department of Electrical and Computer Engineering, Ajou University) ;
  • Lee, June-Seok (Railroad Safety Research Division, Korea Railroad Research Institute) ;
  • Lee, Kyo-Beum (Department of Electrical and Computer Engineering, Ajou University)
  • Received : 2017.05.09
  • Accepted : 2017.10.10
  • Published : 2017.11.20

Abstract

The modular multilevel converter (MMC) is generally considered to be a promising topology for medium-voltage and high-voltage applications. However, in order to apply it to high-power applications, a huge number of switching devices is essential. The numerous switching devices lead to considerable switching losses, high cost and a larger heat sink for each of the switching device. In order to reduce the switching losses of a MMC, this paper analyzes the performance of the conventional discontinuous pulse-width modulation (DPWM) method and its efficiency. In addition, it proposes a modified novel DPWM method for advanced switching losses reduction. The novel DPWM scheme includes an additional rotation method for voltage-balancing and power distribution among sub modules (SMs). Simulation and experimental results verify the effectiveness and performance of the proposed modulation method in terms of its switching losses reduction capability.

Keywords

References

  1. M. Saeedifard and R. Iravani, "Dynamic performance of a modular multilevel back-to-back HVDC system," IEEE Trans. Power Del., Vol. 25, No. 4, pp. 2903-2912, Oct. 2010. https://doi.org/10.1109/TPWRD.2010.2050787
  2. L. Zhang, L. Harnefors, and H. P. Nee, "Powersynchronization control of grid-connected voltage-source converters," IEEE Trans. Power. Syst., Vol. 25, No. 2, pp. 809-820, May 2010. https://doi.org/10.1109/TPWRS.2009.2032231
  3. S. Cole, J. Beerten, and R. Belmans, "Generalized dynamic VSC MTDC model for power system stability studies," IEEE Trans. Power. Syst., Vol. 25, No. 2, pp. 1655-1662, Aug. 2010. https://doi.org/10.1109/TPWRS.2010.2040846
  4. T. Nam, H. Kim, S. Kim, G. T. Son, Y. H. Chung, J. W. Park, C. K. Kim, and K. Hur, "Trade-off strategies in designing capacitor voltage balancing schemes for modular multilevel converter HVDC," J. Electr. Eng. Technol., Vol. 11, No. 4, pp. 829-838, Jul. 2016. https://doi.org/10.5370/JEET.2016.11.4.829
  5. S.-M. Kim, J.-S. Lee, and K.-B. Lee, "A modified level-shifted PWM strategy for fault tolerant cascaded multilevel inverters with improved power distribution," IEEE Trans. Ind. Electron., Vol. 63, No. 11, pp. 7264-7274, Nov. 2016. https://doi.org/10.1109/TIE.2016.2547917
  6. R. Agarwal and S. Singh, "Controller optimization algorithm for a 12-pulse voltage source converter based HVDC system," J. Electr. Eng. Technol., Vol. 12, No. 2, pp. 594-600, Mar. 2017. https://doi.org/10.5370/JEET.2017.12.2.594
  7. R. S. W. and S. K. Sahoo, "Finite control set model predictive current control for a cascaded multilevel inverter," J. Electr. Eng. Technol., Vol. 11, No. 6, pp. 1674-1683, Nov. 2016. https://doi.org/10.5370/JEET.2016.11.6.1674
  8. M.-G. Jeong, H. U. Shin, J. W. Baek, and K.-B. Lee, "An interleaving scheme for DC-link current ripple reductioin in parallel-connected generator systems," J. Power Electron., Vol. 17, No. 4, pp. 1004-1013, Jul. 2017. https://doi.org/10.6113/JPE.2017.17.4.1004
  9. N. T. Quach, D. H. Lee, H. C. Kim, and E. H. Kim, "Analyzing stability of Jeju island power system with modular multilevel converter based HVDC system," J. Electr. Eng. Technol., Vol. 10, No. 1, pp. 47-55, Jan. 2015. https://doi.org/10.5370/JEET.2015.10.1.047
  10. B. Li, Y. Zhang, G. Wang, and D. Xu, "Modulation, harmonic analysis, and balancing control for a new modular multilevel converter," Journal of Power Electronics, Vol. 16, No. 1, pp. 163-172, Jan. 2016. https://doi.org/10.6113/JPE.2016.16.1.163
  11. J. Wang, X. Han, and H. Ma, "A hybrid modular multilevel converter topology with an improved nearest modulation method," Journal of Power Electronics, Vol. 17, No. 1, pp. 96-105, Jan. 2017. https://doi.org/10.6113/JPE.2017.17.1.96
  12. L. Harnefors, A. Antonopoulos, S. Norrga, L. Angquist, and H. P. Nee, "Dynamic analysis of modular multilevel converters," IEEE Trans. Ind. Electron., Vol. 60, No. 7, pp. 2526-2537, Jul. 2013. https://doi.org/10.1109/TIE.2012.2194974
  13. J. Zhang and C. Zhao, "Control strategy of MMC-HVDC under unbalanced grid voltage conditions," Journal of Power Electronics, Vol. 15, No. 6, pp. 1499-1507, Nov. 2015. https://doi.org/10.6113/JPE.2015.15.6.1499
  14. J. Pou, S. Ceballos, G. Konstantinou, V. G. Agelidis, R. Picas, and J. Zaragoza, "Circulating current injection methods based on instantaneous information for the modular multilevel converter," IEEE Trans. Ind. Electron., Vol. 62, No. 2, pp. 777-788, Feb. 2015. https://doi.org/10.1109/TIE.2014.2336608
  15. J. S. Gwon, J. W. Park, D. W. Kang, and S. Kim, "Design and control method for sub-module dc voltage ripple of HVDC-MMC," J. Electr. Eng. Technol., Vol. 11, No. 4, pp. 921-930, Jul. 2016. https://doi.org/10.5370/JEET.2016.11.4.921
  16. H. Miao, J. Mei, J. Zheng, C. Zhang, C. Zhu, T. Ma, and F. Mei, "An improved MMC control strategy with single-phase to ground fault-tolerance capability," J. Electr. Eng. Technol., Vol. 11, No. 5, pp. 1242-1252, Sep. 2016. https://doi.org/10.5370/JEET.2016.11.5.1242
  17. F. Zhang, W, Li, and G. Joos, "A voltage-level-based model predictive control of modular multilevel converter," IEEE Trans. Ind. Electron., Vol. 63, No. 8, pp. 5301-5312, Aug. 2016. https://doi.org/10.1109/TIE.2016.2572671
  18. D. Wu and L. Peng, "Characteristics of nearest level modulation method with circulating current control for modular multilevel converter," IET Power Electron., Vol. 9, No. 2, pp. 155-164, Feb. 2016. https://doi.org/10.1049/iet-pel.2015.0504
  19. J. N. Chiasson, L. M. Tolbert, K. J. Mckenzie, and Z. Du, "A unified approach to solving the harmonic elimination equations in multilevel converters," IEEE Trans. Power Electron., Vol. 19, No. 2, pp. 478-490, Mar. 2004. https://doi.org/10.1109/TPEL.2003.823198
  20. M. Hagiwara and H. Akagi, "Control and Experiment of pulsewidth-modulated modular multilevel converters," IEEE Trans. Power Electron., Vol. 24, No. 7, pp. 1737-1746, Jul. 2009. https://doi.org/10.1109/TPEL.2009.2014236
  21. Y. Li, Y. Wang, and B. Q. Li, "Generalized theory of phase-shifted carrier PWM for cascaded H-bridge converters and modular multilevel converters," IEEE Trans. Power Electron., Vol. 4, No. 2, pp. 589-605, Jun. 2016.
  22. B. Li, R. Yang, D. Xu, G. Wang, W. Wang, and D. Xu, "Analysis of the phase-shifted carrier modulation for modular multilevel converters," IEEE Trans. Power Electron., Vol. 30, No. 1, pp. 297-310, Jan. 2015. https://doi.org/10.1109/TPEL.2014.2299802
  23. P. Hu and D. Jiang, "A level-increased nearest level modulation method for modular multilevel converters," IEEE Trans. Power Electron., Vol. 30, No. 4, pp. 1836-1842, Apr. 2015. https://doi.org/10.1109/TPEL.2014.2325875
  24. N. V. Nguyen, B. X. Nguyen, and H. H. Lee, "An optimized discontinuous PWM method to minimize switching loss for multilevel inverters," IEEE Trans. Ind. Electron., Vol. 58, No. 9, pp. 3958-3966, Sep. 2011. https://doi.org/10.1109/TIE.2010.2102312
  25. U.-M. Choi, H.-H. Lee, and K. -B. Lee, "Simple neutral-point voltage control for three-level inverters using a discontinuous pulse width modulation," IEEE Trans. Energy Convers., Vol. 28, No. 2, pp. 434-443, Jun. 2013. https://doi.org/10.1109/TEC.2013.2257786
  26. J.-S. Lee and K.-B. Lee, "Carrier-based discontinuous PWM method for vienna rectifiers," IEEE Trans. Power Electron., Vol. 30, No. 6, pp. 2896-2900, Jun. 2015. https://doi.org/10.1109/TPEL.2014.2365014
  27. J.-S. Lee and K.-B. Lee, "Performance analysis of carrier-based discontinuous PWM method for Vienna rectifiers with neutral-point voltage balance," IEEE Trans. Power Electron., Vol. 31, No. 6, pp. 4075-4084, Jun. 2016. https://doi.org/10.1109/TPEL.2015.2477828
  28. J. S. Lee, S. Yoo, and K.-B. Lee, "Novel discontinuous PWM method of a three-level inverter for neutral-point voltage ripple reduction," IEEE Trans. Ind. Electron., Vol. 63, No. 6, pp. 3344-3354, Jun. 2016. https://doi.org/10.1109/TIE.2016.2530038
  29. Y. Bak, and K.-B. Lee, "Discontinuous PWM for low switching losses in indirect matrix converter drives," in Proc. IEEE APEC, pp. 2764-2769, 2016.
  30. M.-G. Jeong, S.-M. Kim, and K.-B. Lee, "Discontinuous PWM scheme for a modular multilevel converter with advanced switching losses reduction ability," in Proc. IEEE ECCE, pp. 4546-4551, 2017.
  31. R. Picas, S. Ceballos, J. Pou, J. Zaragoza, G. Konstantinou, and V. G. Agelidis, "Closed-loop discontinuous modulation technique for capacitor voltage ripples and switching losses reduction in modular multilevel converters," IEEE Trans. Power Electron., Vol. 30, No. 9, pp. 4714-4725, Sep. 2015. https://doi.org/10.1109/TPEL.2014.2368055
  32. A. Dekka, B. Wu, V. Yaramasu, and N. R. Zargari, "Integrated model predictive control with reduced switching frequency for modular multilevel converters," IET Electr. Power Appl., Vol. 11, No. 5, pp. 857-863, May 2017. https://doi.org/10.1049/iet-epa.2016.0454