Browse > Article
http://dx.doi.org/10.14773/cst.2016.15.2.54

Biodegradation of Secondary Phase Particles in Magnesium Alloys: A Critical Review  

Kannan, M. Bobby (Biomaterials and Engineering Materials (BEM) Laboratory School of Engineering and Physical Sciences James Cook University)
Publication Information
Corrosion Science and Technology / v.15, no.2, 2016 , pp. 54-57 More about this Journal
Abstract
Magnesium alloys have been extensively studied in recent years for potential biodegradable implant applications. A great deal of work has been done on the evaluation of the corrosion behaviour of magnesium alloys under in vitro and in vivo conditions. However, magnesium alloys, in general, contain secondary phase particles distributed in the matrix and/or along the grain boundaries. Owing to their difference in chemistry in comparison with magnesium matrix, these particles may exhibit different corrosion behaviour. It is essential to understand the corrosion behaviour of secondary phase particles in magnesium alloys in physiological conditions for implant applications. This paper critically reviews the biodegradation behaviour of secondary phase particles in magnesium alloys.
Keywords
magnesium alloys; biomaterial; corrosion; secondary phase particles; galvanic corrosion;
Citations & Related Records
연도 인용수 순위
  • Reference
1 F. Witte, N. Hort, C. Vogt, S. Cohen, K. Kainer, R. Willumeit, F. Feyerabend, Curr. Opin. Solid State. Mater. Sci., 12, 63 (2008) .   DOI
2 M. P. Staiger, A. Pietak, J. Huadmai, G. Dias, Biomaterials, 27, 1728 (2006).   DOI
3 M. B. Kannan, R. K. Singh Raman, J. Biomed. Mater. Res. A, 93, 1050 (2010).
4 G. Song, Corros. Sci., 49, 1696 (2007).   DOI
5 C. Liu, Y. Xin, G. Tang, P. Chu, Mater. Sci. Eng. A-Struct., 456, 350 (2007).   DOI
6 R. Walter, M. B. Kannan, Mater. Lett., 65, 748 (2011).   DOI
7 R. Rettig, S. Virtanen, J. Biomed. Mater. Res. A, 85, 167 (2008).
8 A. Hanzi, P. Gunde, M. Schinhammer, P. Uggowitzer, Acta Biomater., 5, 162 (2009).   DOI
9 M. B. Kannan, R. Raman, Biomaterials, 29, 2306 (2008).   DOI
10 W. C. Kim, J. G. Kim, J. Y. Lee, H. K. Seok, Mater. Lett., 62, 4146 (2008).   DOI
11 M. B. Kannan, Mater. Lett., 64, 739 (2010).   DOI
12 W. Zhou, T. Shen, N. Aung, Corros. Sci., 52, 1035 (2010).   DOI
13 H. Kalb, R. Rzany, B. Hensel, Corros. Sci., 57, 122 (2012).   DOI
14 H. Rad, M. Idris, M. Kadir, S. Farahany, Materials & Design, 33, 88 (2012).   DOI
15 G. Song, A. Atrens, Adv. Eng. Mater., 1, 11 (1999).   DOI
16 E. Ghali, W. Dietzel, K. Kainer, J. Mater. Eng. Perform, 13, 7 (2004).   DOI
17 O. Lunder, J. E. Lein, T. K. Aune, K. Nisancioglu, Corrosion, 45, 741 (1998).
18 G. Song, A. Atrens, X. Wu, B. Zhang, Corros. Sci., 40, 1769 (1998).   DOI
19 K. S. Shin, S. Cohen, G. Ben-Hamu, D. Elizier, J. Alloy. Compd., 431, 269 (2007).   DOI
20 W. C. Neil, M. Forsyth, P. C. Howlett, C. R. Hutchinson, B. R. W. Hinton, Corros. Sci., 53, 3299 (2011).   DOI
21 A. E. Coy, F. Viejo, P. Skeldon, G. E. Thompson, Corros. Sci., 52, 3896 (2010).   DOI
22 M. B. Kannan, E. Koc, M. Unal, Mater. Lett., 82, 54 (2012).   DOI
23 R. Walter, M. B. Kannan, J. Biomed. Mater. Res. A, 103, 990 (2014).