• Title/Summary/Keyword: Error square Controller

Search Result 73, Processing Time 0.025 seconds

Optimization of PI Controller Gain for Simplified Vector Control on PMSM Using Genetic Algorithm

  • Jeong, Seok-Kwon;Wibowo, Wahyu Kunto
    • Journal of Power System Engineering
    • /
    • v.17 no.5
    • /
    • pp.86-93
    • /
    • 2013
  • This paper proposes the used of genetic algorithm for optimizing PI controller and describes the dynamic modeling simulation for the permanent magnet synchronous motor driven by simplified vector control with the aid of MATLAB-Simulink environment. Furthermore, three kinds of error criterion minimization, integral absolute error, integral square error, and integral time absolute error, are used as objective function in the genetic algorithm. The modeling procedures and simulation results are described and presented in this paper. Computer simulation results indicate that the genetic algorithm was able to optimize the PI controller and gives good control performance of the system. Moreover, simplified vector control on permanent magnet synchronous motor does not need to regulate the direct axis component current. This makes simplified vector control of the permanent magnet synchronous motor very useful for some special applications that need simple control structure and low cost performance.

Control of a pressurized light-water nuclear reactor two-point kinetics model with the performance index-oriented PSO

  • Mousakazemi, Seyed Mohammad Hossein
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2556-2563
    • /
    • 2021
  • Metaheuristic algorithms can work well in solving or optimizing problems, especially those that require approximation or do not have a good analytical solution. Particle swarm optimization (PSO) is one of these algorithms. The response quality of these algorithms depends on the objective function and its regulated parameters. The nonlinear nature of the pressurized light-water nuclear reactor (PWR) dynamics is a significant target for PSO. The two-point kinetics model of this type of reactor is used because of fission products properties. The proportional-integral-derivative (PID) controller is intended to control the power level of the PWR at a short-time transient. The absolute error (IAE), integral of square error (ISE), integral of time-absolute error (ITAE), and integral of time-square error (ITSE) objective functions have been used as performance indexes to tune the PID gains with PSO. The optimization results with each of them are evaluated with the number of function evaluations (NFE). All performance indexes achieve good results with differences in the rate of over/under-shoot or convergence rate of the cost function, in the desired time domain.

Optimal tuning method for nonlinear PI controllers (비선형 PI 제어기의 최적 조율법)

  • 이동권;곽철규;이문용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1392-1395
    • /
    • 1996
  • Nonlinear PID controllers have increasingly used in current industrial practice because it is robust and is easy to operate. Little guideline and tuning method, however, has been recommended for the nonlinear PID controllers while a lot of result is available for the linear PID controllers. Application guideline and tuning formulae are presented for error square type nonlinear controllers, which are most popular currently, are presented.

  • PDF

Two-Link Manipulator Control Using Indirect Adaptive Fuzzy Controller

  • N., Waurajitti;J., Ngamwiwit;T., Benjanarasuth;H., Hirata;N., Komine
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.445-445
    • /
    • 2000
  • This paper proposes the MIMO indirect adaptive fuzzy controller to control the two-link manipulators. The input-output linearization technique, equivalent control input plus integral term, augmented error model and recursive least square adaptive law are used fer the controller. The linear type of fuzzifier-defuzzifier fuzzy logic system used for nonlinear function makes easy to farm the error model and able to follow the adaptive system approach. Such that control approach, the control system is not required joint speed and accerelation measurement and easy to implement and tune. The simulation results showed that the proposed controller has good control performance, stability, very small tracking error, decoupling, fast convergence, robust to parameter variation and load.

  • PDF

An integral square error-based model predictive controller for two area load frequency control

  • Kassem, Ahmed M.;Sayed, Khairy;El-Zohri, Emad H.;Ali, Hossam H.
    • Advances in Energy Research
    • /
    • v.5 no.1
    • /
    • pp.79-90
    • /
    • 2017
  • The main objective of load frequency control (LFC) is to keep the frequency value at nominal value and force deviation of the frequency to zero in case of load change. This paper suggests LFC by using a model predictive control (MPC), based on Integral Square Error (ISE) method designed to optimize the damping of oscillations in a two-area power system. The MPC is designed and simulated with a model system in state space, for robust performance in the system response. The proposed MPC is tuned by ISE to achieve superior efficiency. Moreover, its performance has been assessed and compared with the PI and PID conventional controllers. The settling time and overshoot with MPC are extremely minimized as compared with conventional controllers.

An Optimum Tuning for IMC-PID Controller (IMC-PID 제어기의 최적 동조)

  • Park, Jong-Su;Lim, Dong-Kyun;Suh, Byung-Suhl
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.167-169
    • /
    • 2005
  • This paper proposes an optimum tuning which improves the tuning effect of IMC-PID and guarantees the performance and robustness of controller system by considering gain margin, phase margin, sensitivity functions and integral square error(ISE) for IMC-PID controller.

  • PDF

An Optimum Tuning for IMC-PID Controller (IMC-PID 제어기의 최적 동조)

  • Park, Jong-Su;Lim, Dong-Kyun;Suh, Byung-Suhl
    • Proceedings of the KAIS Fall Conference
    • /
    • 2006.05a
    • /
    • pp.344-347
    • /
    • 2006
  • This paper proposes an optimum tuning which improves the tuning effect of IMC-PID and guarantees the performance and robustness of controller system by considering gain margin, phase margin, sensitivity functions and integral square error(ISE) for IMC-PID controller.

  • PDF

A study on optimal position control using a microprocessor (마이크로 프로세서를 이용한 최적위치제어에 관한 연구)

  • 양주호;하주식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.51-64
    • /
    • 1986
  • Recently, being due to development of a small microprocessor, microprocessor have found increasing application as a digital controller in the control system. In this paper, authors analyze theoretically the continuous PID controller of a position control system with servomotor, and program the microprocessor as digital PID controller by an assembly language, and search the optimal parameters of the digital PID controller which make the smallest integral square error criterion for a performance criterion, and take experiment the indicial responses with optimal parameter. The results are following. 1) PD- behavior controller was better than P-behavior controller. 2) The smaller the smapling times of P-behavior controller and PD-behavior controller were, the better the indicial responses of the discrete system were. 3) Using a small microprocessor could replace the traditional continuous PID controller for good control.

  • PDF

Convergence of the Filtered-x Least Mean Square Adaptive Algorithm for Active Noise Control of a Multiple Sinusoids (다중 정현파의 능동소음제어를 위한 Filtered-x 최소 평균제곱 적응 알고리듬 수렴 연구)

  • 이강승
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.4
    • /
    • pp.239-246
    • /
    • 2003
  • Application of the filtered-x Least Mean Square(LMS) adaptive filter to active noise control requires to estimate the transfer characteristics between the output and the error signal of the adaptive controller. In this paper, we derive the filtered-x adaptive noise control algorithm and analyze its convergence behavior when the acoustic noise consists of multiple sinusoids. The results of the convergence analysis of the filtered-x LMS algorithm indicate that the effects of the parameter estimation inaccuracy on the convergence behavior of the algorithm are characterized by two distinct components Phase estimation error and estimated gain. In particular, the convergence is shown to be strongly affected by the accuracy of the phase response estimate. Simulation results are presented to support the theoretical convergence analysis.

Design of Adaptive Discrete Time Sliding-Mode Tracking Controller for a Hydraulic Proportional Control System Considering Nonlinear Friction (비선형 마찰을 고려한 유압비례제어 시스템의 적응 이산시간 슬라이딩모드 추적 제어기 설계)

  • Park, H.B.
    • Journal of Power System Engineering
    • /
    • v.9 no.4
    • /
    • pp.175-180
    • /
    • 2005
  • Incorrections between model and plant are parameter, system order uncertainties and modeling error due to disturbance like friction. Therefore to achieve a good tracking performance, adaptive discrete time sliding mode tracking controller is used under time-varying desired position. Based on the diophantine equation, a new discrete time sliding function is defined and utilized for the control law. Robustness is increased by using both a recursive least-square method and a sliding function-based nonlinear feedback. The effectiveness of the proposed control algorithm is proved by the results of simulation and experiment.

  • PDF