DOI QR코드

DOI QR Code

Control of a pressurized light-water nuclear reactor two-point kinetics model with the performance index-oriented PSO

  • Received : 2020.05.04
  • Accepted : 2021.02.16
  • Published : 2021.08.25

Abstract

Metaheuristic algorithms can work well in solving or optimizing problems, especially those that require approximation or do not have a good analytical solution. Particle swarm optimization (PSO) is one of these algorithms. The response quality of these algorithms depends on the objective function and its regulated parameters. The nonlinear nature of the pressurized light-water nuclear reactor (PWR) dynamics is a significant target for PSO. The two-point kinetics model of this type of reactor is used because of fission products properties. The proportional-integral-derivative (PID) controller is intended to control the power level of the PWR at a short-time transient. The absolute error (IAE), integral of square error (ISE), integral of time-absolute error (ITAE), and integral of time-square error (ITSE) objective functions have been used as performance indexes to tune the PID gains with PSO. The optimization results with each of them are evaluated with the number of function evaluations (NFE). All performance indexes achieve good results with differences in the rate of over/under-shoot or convergence rate of the cost function, in the desired time domain.

Keywords

References

  1. J.P. Camara Augusto, A. Dos Santos Nicolau, R. Schirru, PSO with dynamic topology and random keys method applied to nuclear reactor reload, Prog. Nucl. Energy 83 (2015) 191-196. https://doi.org/10.1016/j.pnucene.2015.03.009
  2. P. Wang, J. Wan, R. Luo, F. Zhao, X. Wei, Control parameter optimization for AP1000 reactor using Particle Swarm Optimization, Ann. Nucl. Energy 87 (2015) 687-695. https://doi.org/10.1016/j.anucene.2015.08.005
  3. T.Y. Lin, J.T. Yeh, W.S. Kuo, Using particle swarm optimization algorithm to search for a power ascension path of boiling water reactors, Ann. Nucl. Energy 102 (2017) 37-46. https://doi.org/10.1016/j.anucene.2016.12.019
  4. A. Ahmad, S. ul I. Ahmad, Optimization of fuel loading pattern for a material test reactor using swarm intelligence, Prog. Nucl. Energy 103 (2018) 45-50. https://doi.org/10.1016/j.pnucene.2017.11.007
  5. H. Wang, M. jun Peng, J. Wesley Hines, G. yang Zheng, Y. kuo Liu, B.R. Upadhyaya, A hybrid fault diagnosis methodology with support vector machine and improved particle swarm optimization for nuclear power plants, ISA Trans. 95 (2019) 358-371. https://doi.org/10.1016/j.isatra.2019.05.016
  6. W. Zeng, W. Zhu, T. Hui, L. Chen, J. Xie, T. Yu, An IMC-PID controller with Particle Swarm Optimization algorithm for MSBR core power control, Nucl. Eng. Des. 360 (2020), https://doi.org/10.1016/j.nucengdes.2020.110513.
  7. S.M.H. Mousakazemi, Computational effort comparison of genetic algorithm and particle swarm optimization algorithms for the proportionaleintegralederivative controller tuning of a pressurized water nuclear reactor, Ann. Nucl. Energy 136 (2020) 107019. https://doi.org/10.1016/j.anucene.2019.107019
  8. D.L. Hetrick, Dynamics of Nuclear Reactors, American Nuclear Society, 1993.
  9. P.F. Wang, Y. Liu, B.T. Jiang, J.S. Wan, F.Y. Zhao, Nodal dynamics modeling of AP1000 reactor for control system design and simulation, Ann. Nucl. Energy 62 (2013) 208-223. https://doi.org/10.1016/j.anucene.2013.05.036
  10. P.J. Sipush, R.A. Kerr, A.P. Ginsberg, Load follow demonstrations employing constant axial offset power distribution control procedures, Nucl. Technol. 31 (1976) 12-31. https://doi.org/10.13182/NT76-A31695
  11. C.E. Meyer, C.L. Bennett, D.J. Hill, K.J. Dzikowski, Improved load follow strategy for return-to-power capability, Nucl. Technol. 41 (1978) 27-35. https://doi.org/10.13182/NT78-A32130
  12. H. Eliasi, M.B. Menhaj, H. Davilu, Robust nonlinear model predictive control for nuclear power plants in load following operations with bounded xenon oscillations, Nucl. Eng. Des. 241 (2011) 533-543. https://doi.org/10.1016/j.nucengdes.2010.12.004
  13. K.J. Astrom, T. HAgglund, Advanced PID control, ISA-The Instrumentation, Systems and Automation Society, 2006, https://doi.org/10.1109/MCS.2006.1580160.
  14. R. Eberhart, J. Kennedy, New optimizer using particle swarm theory, in: Proc. Int. Symp. Micro Mach. Hum. Sci., IEEE, 1995, pp. 39-43.
  15. R. Poli, J. Kennedy, T. Blackwell, Particle swarm optimization, Swarm Intell 1 (2007) 33-57. https://doi.org/10.1007/s11721-007-0002-0
  16. M. Clerc, J. Kennedy, The particle swarm-explosion, stability, and convergence in a multidimensional complex space, IEEE Trans. Evol. Comput. 6 (2002) 58-73. https://doi.org/10.1109/4235.985692
  17. P. Ngatchou, A. Zarei, A. El-Sharkawi, Pareto multi objective optimization, in: Proc. 13th Int. Conf. on, Intell. Syst. Appl. To Power Syst., IEEE, 2005, pp. 84-91.

Cited by

  1. Gradient descent-particle swarm optimization based deep neural network predictive control of pressurized water reactor power vol.145, 2021, https://doi.org/10.1016/j.pnucene.2021.104108