• Title/Summary/Keyword: Error amplifier

Search Result 311, Processing Time 0.021 seconds

Radiation-hardened-by-design preamplifier with binary weighted current source for radiation detector

  • Minuk Seung;Jong-Gyun Choi ;Woo-young Choi;Inyong Kwon
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.189-194
    • /
    • 2024
  • This paper presents a radiation-hardened-by-design preamplifier that utilizes a self-compensation technique with a charge-sensitive amplifier (CSA) and replica for total ionizing dose (TID) effects. The CSA consists of an operational amplifier (OPAMP) with a 6-bit binary weighted current source (BWCS) and feedback network. The replica circuit is utilized to compensate for the TID effects of the CSA. Two comparators can detect the operating point of the replica OPAMP and generate appropriate signals to control the switches of the BWCS. The proposed preamplifier was fabricated using a general-purpose complementary metal-oxide-silicon field effect transistor 0.18 ㎛ process and verified through a test up to 230 kGy (SiO2) at a rate of 10.46 kGy (SiO2)/h. The code of the BWCS control circuit varied with the total radiation dose. During the verification test, the initial value of the digital code was 39, and a final value of 30 was observed. Furthermore, the preamplifier output exhibited a maximum variation error of 2.39%, while the maximum rise-time error was 1.96%. A minimum signal-to-noise ratio of 49.64 dB was measured.

A Low Noise Low Power Capacitive Instrument Amplifier for Bio-Potential Detection (생체 신호 측정용 저 잡음 저 전력 용량성 계측 증폭기)

  • Park, Chang-Bum;Jung, Jun-Mo;Lim, Shin-Il
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.5
    • /
    • pp.342-347
    • /
    • 2017
  • We present a precision instrument amplifier (IA) designed for bio-potential acquisition. The proposed IA employs a capacitively coupled instrument amplifier (CCIA) structure to achieve a rail-to-rail input common-mode range and low gain error. A positive feedback loop is applied to boost the input impedance. Also, DC servo loop (DSL) with pseudo resistors is adopted to suppress electrode offset for bio-potential sensing. The proposed amplifier was designed in a $0.18{\mu}m$ CMOS technology with 1.8V supply voltage. Simulation results show the integrated noise of $1.276{\mu}Vrms$ in a frequency range from 0.01 Hz to 1 KHz, 65dB SNR, 118dB CMRR, and $58M{\Omega}$ input impedance respectively. The total current of IA is $38{\mu}A$. It occupies $740{\mu}m$ by $1300{\mu}m$ including the passive on-chip low pass filter.

A Feedforward High Power Amplifier with Loops that can Reduce RX Band Noise as well as Intermodulation Distortion Signals (수신 대력 잡음과 혼변조 왜곡 신호 제거 루프를 갖는 Feedforward 대전력 증폭기 설계)

    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.2
    • /
    • pp.308-315
    • /
    • 2001
  • In this paper, a new power amplifier is proposed for reduction of amplified RX band noise signals as well as intermodulation distortion signals using feedforward technique. This power amplifier is implemented for IMT-2000 basestation TX frequency band. Both TX band intermodulation distortion signals and RX band noise signals are reduced by controlling variable attenuator, phase shifter and error amplifier. The proposed power amplifier, which contains two loops-intermodulation distortion signals cancellation loop and RX band noise signals cancellation loop, can provide duplexer with low TX path insertion loss for various wireless communication systems due to choice of loose RX attenuation characteristic. The principle of the proposed amplifier is described graphically based on the conceptual schematic diagram. A two-tone test for power amplifier is done at 2.14GHz with frequency spacing of 5MHz, and RX band rejection test is done over RX full band of 60MHz with 1.95GHz center frequency. Experimental results represent that the cancellation performance of intermodulation distortion signals and RX band noise signals are more than 3 1dB and 21dB, respectively.

  • PDF

Low Drop-Out (LDO) Voltage Regulator with Improved Power Supply Rejection

  • Jang, Ho-Joon;Roh, Yong-Seong;Moon, Young-Jin;Park, Jeong-Pyo;Yoo, Chang-Sik
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.3
    • /
    • pp.313-319
    • /
    • 2012
  • The power supply rejection (PSR) of low drop-out (LDO) voltage regulator is improved by employing an error amplifier (EA) which is configured so the power supply noise be cancelled at the output. The LDO regulator is implemented in a 0.13-${\mu}m$ standard CMOS technology. The external supply voltage level is 1.2-V and the output is 1.0-V while the load current can range from 0-mA to 50-mA. The power supply rejection is 46-dB, 49-dB, and 38-dB at DC, 2-MHz, and 10-MHz, respectively. The quiescent current consumption is 65-${\mu}A$.

Performance Evaluation of Convolution Coding OFDM Systems (컨볼루션 코딩 OFDM 시스템의 성능 분석)

  • Choi, Seung-Kuk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.2
    • /
    • pp.294-301
    • /
    • 2013
  • OFDM technique uses multiple sub-carriers for the data transmission. Therefore, bit error rate increases because of inter-carrier interference caused by nonlinear high power amplifier and carrier frequency offset. Wireless OFDM transmission over multi path fading channels is characterized by small transmission gain in multiple sub-carrier frequency interval. Therefore bit error rate increases because of burst errors. Inter-leaver and convolution error control coding are effective for the reduction of this burst error. Pilot symbol is used for the channel estimation in OFDM systems. However, imperfect channel estimates in this systems degrade the performance. The performance of this convolution coding OFDM systems using inter-leaver, gauged by the bit error rate, is analyzed considering the nonlinear high power amplifier, carrier frequency offset and channel estimation error.

Study of RF Impairments in Wideband Chirp Signal Generator (광대역 첩 신호 발생기를 위한 RF 불균형 연구)

  • Ryu, Sang-Burm;Kim, Joong-Pyo;Yang, Jeong-Hwan;Won, Young-Jin;Lee, Sang-Kon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.12
    • /
    • pp.1205-1214
    • /
    • 2013
  • Recently spaceborne SAR systems are increasing image resolution and frequency. As a high quality image resolution, the wider bandwidth is required and a wideband signal generator with RF component is very complicated and RF impairments of device is increased. Therefore, it is very important to improve performance by reducing these errors. In this study, the transmission signal of the wideband signal generator is applied to the phase noise, IQ imbalance, ripple gain, nonlinear model of high power amplifier. And we define possible structures of wideband signal generator and measure the PSLR and ISLR for the performance assesment. Also, we extract error of the amplitude and phase from the waveform and use a quadratic polynomial curve fitting and examine the performance change due to nonlinear device. Finally, we apply a high power amplifier predistortion method for non-linear error compensation. And we confirm that distortion in the output of the amplifier by intermodulation component is decreased by 15 dB.

A 4×4 Multiport Amplifier System with Reconfigurable Switching Matrices and Error Calibration (재구성 스위칭 매트릭스와 에러 보정회로를 포함한 4×4 다중 포트 증폭 시스템)

  • Lee, Han Lim;Park, Dong-Hoon;Lee, Won-Seok;Khang, Seung-Tae;Lee, Moon-Que;Yu, Jong-Won
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.6
    • /
    • pp.637-645
    • /
    • 2014
  • This paper presents a new $4{\times}4$ multi-port amplifier(MPA) structure using reconfigurable switching matrices as input and output hybrid matrices(IHM, OHM), and phase/amplitude error calibration circuits. According to the mode selection of the switches, output power can be flexibly and effectively managed since the number of PA's to be used and the number of output port to distribute/combine amplified signals can be controlled. In addition, the proposed structure contains the phase and amplitude error calibration block that helps produce identical amplitudes and desired phase differences to the $4{\times}4$ OHM, resulting in optimizing the port-to-port isolation of the MPA system.

12-bit 10-MS/s CMOS Pipeline Analog-to-Digital Converter (12-비트 10-MS/s CMOS 파이프라인 아날로그-디지털 변환기)

  • Cho, Se-Hyeon;Jung, Ho-yong;Do, Won-Kyu;Lee, Han-Yeol;Jang, Young-Chan
    • Journal of IKEEE
    • /
    • v.25 no.2
    • /
    • pp.302-308
    • /
    • 2021
  • A 12-bit 10-MS/s pipeline analog-to-digital converter (ADC) is proposed for image processing applications. The proposed pipeline ADC consists of a sample and hold amplifier, three stages, a 3-bit flash analog-to-digital converter, and a digital error corrector. Each stage is operated by using a 4-bit flash ADC (FADC) and a multiplying digital-to-analog converter (MDAC). The proposed sample and hold amplifier increases the voltage gain using gain boosting for the ADC with high resolution. The proposed pipelined ADC is designed using a 180-nm CMOS process with a supply voltage of 1.8 and it has an effective number of bit (ENOB) of 10.52 bits at sampling rate of 10MS/s for a 1-Vpp differential sinusoidal analog input with frequency of 1 MHz. The measured ENOB is 10.12 bits when the frequency of the sinusoidal analog input signal is a Nyquist frequency of approximately 5 MHz.

SER Analysis of Arbitrary Two-Dimensional Signaling over Nonlinear AWGN Channels (비선형 채널에서 임의의 2차원 변조 신호의 SER 분석)

  • Lee, Jae-Yoon;Yoon, Dong-Weon;Cho, Kyong-Kuk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.7A
    • /
    • pp.738-745
    • /
    • 2007
  • The non-linearity of HPA(high power amplifier) which is an important component in modern communications systems introduces AM/AM and AM/PM distortion so that the transmitted signal is deteriorated. And, the I/Q unbalances and phase error which are generated by non-ideal components are inevitable physical phenomena and lead to performance degradation when we implement a practical two-dimensional (2-D) modulation system. In this paper, we provide an exact and general expression involving the 2-D Gaussian Q-function for the error probabilities of arbitrary 2-D signaling with I/Q amplitude and phase unbalances in nonlinear additive white Gaussian noise (AWGN) channels by using the coordinate rotation and shifting technique.

Performance Evaluation of OFDM Systems Dependent on Subcarrier Allocation Method (부반송파 할당방식에 따른 OFDM 시스템의 성능 분석)

  • Choi, Seung-Kuk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.2
    • /
    • pp.295-302
    • /
    • 2014
  • OFDM technique uses multiple sub-carriers for the data transmission. Therefore, inter carrier interference is generated because of nonlinear high power amplifier and carrier frequency offset. Wireless OFDM transmission over Doppler fading channels also causes inter carrier interference. The interference increases the bit error rate in receiver. Sub-carrier allocation methods in LTE and WiMAX standards are different. The performance of OFDM systems using different sub-carrier allocation, gauged by the bit error rate, is analyzed considering the nonlinear high power amplifier, carrier frequency offset and Doppler fading channels.