• Title/Summary/Keyword: Equipment for semiconductor

Search Result 556, Processing Time 0.024 seconds

A Design of an Open Architectural Controller Platform for Semiconductor Manufacturing Equipment (반도체 제조 장비를 위한 개방형 제어기 플랫폼 설계)

  • 장성진;김홍록;서일홍
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.290-290
    • /
    • 2000
  • This paper presents some ideas about an open architectural controller platform for semiconductor manufacturing equipment First, we proposed modular-typed software architecture. Each module is composed of commands and status sets. Second, common bus protocol is suggested in order to communicate with other modules. It is designed with visual c++ programming. Finally, job program is consisted of simple commands and status. Consequently, Controllers are easily developed with some required modular assembling.

  • PDF

Study on Fault Diagnosis and Data Processing Techniques for Substrate Transfer Robots Using Vibration Sensor Data

  • MD Saiful Islam;Mi-Jin Kim;Kyo-Mun Ku;Hyo-Young Kim;Kihyun Kim
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.2
    • /
    • pp.45-53
    • /
    • 2024
  • The maintenance of semiconductor equipment is crucial for the continuous growth of the semiconductor market. System management is imperative given the anticipated increase in the capacity and complexity of industrial equipment. Ensuring optimal operation of manufacturing processes is essential to maintaining a steady supply of numerous parts. Particularly, monitoring the status of substrate transfer robots, which play a central role in these processes, is crucial. Diagnosing failures of their major components is vital for preventive maintenance. Fault diagnosis methods can be broadly categorized into physics-based and data-driven approaches. This study focuses on data-driven fault diagnosis methods due to the limitations of physics-based approaches. We propose a methodology for data acquisition and preprocessing for robot fault diagnosis. Data is gathered from vibration sensors, and the data preprocessing method is applied to the vibration signals. Subsequently, the dataset is trained using Gradient Tree-based XGBoost machine learning classification algorithms. The effectiveness of the proposed model is validated through performance evaluation metrics, including accuracy, F1 score, and confusion matrix. The XGBoost classifiers achieve an accuracy of approximately 92.76% and an equivalent F1 score. ROC curves indicate exceptional performance in class discrimination, with 100% discrimination for the normal class and 98% discrimination for abnormal classes.

Model-based Estimation of Production Parameters of Electronics FAB Equipment (모델기반의 전자부품 FAB설비 생산기준정보 추정)

  • Kang, Dong-Hun;Kim, Min-Kyu;Choi, Byoung-Kyu;Park, Bum-Chul
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.33 no.2
    • /
    • pp.166-173
    • /
    • 2007
  • In this paper, we propose a model-based approach to estimating production parameters of semiconductor FAB equipment. For FAB scheduling, for example, we need to know equipment's production parameters such as flow time, tact time, setup time, and down time. However, these data are not available, and they have to be estimated from material move data such as loading times and unloading times that are automatically collected in modern automated semiconductor FAB. The proposed estimation method may be regarded as a Bayes estimation method because we use additional information about the production parameters. Namely, it is assumed that the technical ranges of production parameters are known. The proposed estimation method has been applied to a LCD FAB, and found to be valid and useful.

A experimental study about plasma ion treatment to improve hardness of electro-polished surface (전해연마면의 표면경도 향상을 위한 플라즈마 이온질화 처리법에 관한 실험적 연구)

  • Kim, Jin-Beom;Hong, Pil-Gi;Seo, Tae-Il;Son, Chang-Woo
    • Design & Manufacturing
    • /
    • v.13 no.1
    • /
    • pp.13-18
    • /
    • 2019
  • The size and prospects of the domestic semiconductor equipment market are increasing every year. In the case of various parts used inside semiconductor equipments, high durability such as high strength and abrasion resistance is demanded. Particularly, the gases used in semiconductor production processes are toxic. In order to prevent such toxic gas leakage, a precision processing technique and a surface treatment technique for preventing corrosion are required. Electro-polishing is an electro-chemical method of polishing a metal surface to make it smooth and polished. Electro-polishing is mainly used in the finishing process of metal surface. Unlike mechanical polishing, electro-polishing is used in many fields, such as fine chemical etching equipment, since no damaged layer or burr, fine polishing groove and particles are generated. However, in order to withstand the gas used in the semiconductor equipment, the parts must have high corrosion resistance. However, the surface hardness generally become lowered through electro-polishing. Therefore, in this study, surface hardness were experimentally observed before and after electro-polishing. Then, a method of improving hardness by preparing a nitrided layer by plasma ion nitriding treatment.

Fault Detection for Ceramic Heater in CVD Equipment using Zero-Crossing Rate and Gaussian Mixture Model (영교차율과 가우시안 혼합모델을 이용한 박막증착장비의 세라믹 히터 결함 검출)

  • Ko, JinSeok;Mu, XiangBin;Rheem, JaeYeol
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.2
    • /
    • pp.67-72
    • /
    • 2013
  • Temperature is a critical parameter in yield improvement for wafer manufacturing. In chemical vapor deposition (CVD) equipment, crack defect in ceramic heater leads to yield reduction, however, there is no suitable ceramic heater fault detection system for conventional CVD equipment. This paper proposes a short-time zero-crossing rate based fault detection method for the ceramic heater in CVD equipment. The proposed method measures the output signal ($V_{pp}$) of RF filter and extracts the zero-crossing rate (ZCR) as feature vector. The extracted feature vectors have a discriminant power and Gaussian mixture model (GMM) based fault detection method can detect fault in ceramic heater. Experimental results, carried out by measured signals provided by a CVD equipment manufacturer, indicate that the proposed method detects effectively faults in various process conditions.

나노위치제어용 선형 모터의 거동 분석

  • Seol Jin-Su;Lee U-Yeong;Im Gyeong-Hwa
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2005.05a
    • /
    • pp.125-128
    • /
    • 2005
  • The equipments in semi-conductor, display and measurement fields require high precision and resolution positioning technology. High positioning control can be carried out by using linear motors with little vibration, backlash and friction. In this paper, the acceleration patterns of the moving Part are analyzed to obtain the optimum pattern which leads to the less vibration reduction of equipment. In addition, the effect of friction force in guide rail on position control accuracy is investigated to identify possibility of using current bearing system for nano-positioning control.

  • PDF

Fabrication of high brightness multi lamps backlight system for large size LCD panel inspection equipment (대형 LCD 패널 검사를 위한 고휘도 멀티램프 백라이트 시스템)

  • 전영태;박종리;임성규
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2004.05a
    • /
    • pp.249-252
    • /
    • 2004
  • 냉음극관(CCFL) 램프를 이용한 멀티램프 구동용 인버터를 제작 한 후 이를 이용하여 휘도 $20,000 cd/\textrm{m}^2$, 휘도 균일도 85%의 장비용 백라이트를 제작하였다. 이러한 고휘도, 높은 휘도 균일도의 직하방식 백라이트를 이용하여 기존의 형광등을 이용한 검사장비 보다 고휘도, 박형의 장수명 백라이트를 제작하였다.

  • PDF