• 제목/요약/키워드: Equations

검색결과 17,494건 처리시간 0.033초

THE GLOBAL ATTRACTOR OF THE 2D G-NAVIER-STOKES EQUATIONS ON SOME UNBOUNDED DOMAINS

  • Kwean, Hyuk-Jin;Roh, Jai-Ok
    • 대한수학회논문집
    • /
    • 제20권4호
    • /
    • pp.731-749
    • /
    • 2005
  • In this paper, we study the two dimensional g-Navier­Stokes equations on some unbounded domain ${\Omega}\;{\subset}\;R^2$. We prove the existence of the global attractor for the two dimensional g-Navier­Stokes equations under suitable conditions. Also, we estimate the dimension of the global attractor. For this purpose, we exploit the concept of asymptotic compactness used by Rosa for the usual Navier-Stokes equations.

Block LU Factorization for the Coupled Stokes Equations by Spectral Element Discretization

  • Piao, Xiangfan;Kim, Philsu;Kim, Sang Dong
    • Kyungpook Mathematical Journal
    • /
    • 제52권4호
    • /
    • pp.359-373
    • /
    • 2012
  • The block LU factorization is used to solve the coupled Stokes equations arisen from an optimal control problem subject to Stokes equations. The convergence of the spectral element solution is proved. Some numerical evidences are provided for the model coupled Stokes equations. Moreover, as an application, this algorithm is performed for an optimal control problem.

EXISTENCE OF PERIODIC SOLUTIONS TO LIAPUNOV CHARACTERISTIC INDEX EQUATIONS

  • Wang, Han You;Ouyang, Jun;Yao, Zhuo
    • 충청수학회지
    • /
    • 제19권2호
    • /
    • pp.123-131
    • /
    • 2006
  • In this paper, a numerical programming for Liapunov index of differential equations with periodic coefficients depending on parameters is given. The associated equations are given at first, then existence of periodic solutions to the associated equations is proved in this paper. And we compute periodic solution u(t) of the associated equations. Finally, we give the error of approximate calculation.

  • PDF

A RESERCH ON NONLINEAR (p, q)-DIFFERENCE EQUATION TRANSFORMABLE TO LINEAR EQUATIONS USING (p, q)-DERIVATIVE

  • ROH, KUM-HWAN;LEE, HUI YOUNG;KIM, YOUNG ROK;KANG, JUNG YOOG
    • Journal of applied mathematics & informatics
    • /
    • 제36권3_4호
    • /
    • pp.271-283
    • /
    • 2018
  • In this paper, we introduce various first order (p, q)-difference equations. We investigate solutions to equations which are linear (p, q)-difference equations and nonlinear (p, q)-difference equations. We also find some properties of (p, q)-calculus, exponential functions, and inverse function.

Lie Algebraic Solution of Stochastic Differential Equations

  • Kim, Yoon-Tae;Jeon, Jong-Woo
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2003년도 춘계 학술발표회 논문집
    • /
    • pp.25-30
    • /
    • 2003
  • We prove that the logarithm of the flow of stochastic differential equations is an element of the free Lie algebra generated by a finite set consisting of vector fields being coefficients of equations. As an application, we directly obtain a formula of the solution of stochastic differential equations given by Castell(1993) without appealing to an expansion for ordinary differential equations given by Strichartz (1987).

  • PDF

DECOMPOSITION METHOD FOR SOLVING NONLINEAR INTEGRO-DIFFERENTIAL EQUATIONS

  • KAMEL AL-KHALED;ALLAN FATHI
    • Journal of applied mathematics & informatics
    • /
    • 제19권1_2호
    • /
    • pp.415-425
    • /
    • 2005
  • This paper outlines a reliable strategy for solving nonlinear Volterra-Fredholm integro-differential equations. The modified form of Adomian decomposition method is found to be fast and accurate. Numerical examples are presented to illustrate the accuracy of the method.

NEW HOMOTOPY PERTURBATION METHOD FOR SOLVING INTEGRO-DIFFERENTIAL EQUATIONS

  • Kim, Kyoum Sun;Lim, Hyo Jin
    • Journal of applied mathematics & informatics
    • /
    • 제30권5_6호
    • /
    • pp.981-992
    • /
    • 2012
  • Integro-differential equations arise in modeling various physical and engineering problems. Several numerical and analytical methods have been developed to solving such equations. We introduce the NHPM for solving nonlinear integro-differential equations. Several examples for solving integro-differential equations are presented to illustrate the efficiency of the proposed NHPM.

INTERVAL OSCILLATION THEOREMS FOR SECOND-ORDER DIFFERENTIAL EQUATIONS

  • Bin, Zheng
    • Journal of applied mathematics & informatics
    • /
    • 제27권3_4호
    • /
    • pp.581-589
    • /
    • 2009
  • In this paper, we are concerned with a class of nonlinear second-order differential equations with a nonlinear damping term and forcing term: $$(r(t)k_1(x(t),x'(t)))'+p(t)k_2(x(t),x'(t))x'(t)+q(t)f(x(t))=0$$. Passage to more general class of equations allows us to remove a restrictive condition usually imposed on the nonlinearity. And, as a consequence, our results apply to wider classes of nonlinear differential equations. Some illustrative examples are considered.

  • PDF

Fuzzy relation equations in pseudo BL-algebras

  • Kim, Yong Chan
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제13권3호
    • /
    • pp.208-214
    • /
    • 2013
  • Bandler and Kohout investigated the solvability of fuzzy relation equations with inf-implication compositions in complete lattices. Perfilieva and Noskova investigated the solvability of fuzzy relation equations with inf-implication compositions in BL-algebras. In this paper, we investigate various solutions of fuzzy relation equations with inf-implication compositions in pseudo BL-algebras.

Scalar form of dynamic equations for a cluster of bodies

  • Vinogradov, Oleg
    • Structural Engineering and Mechanics
    • /
    • 제5권2호
    • /
    • pp.209-220
    • /
    • 1997
  • The dynamic equations for an arbitrary cluster comprising rigid spheres or assemblies of spheres (subclusters) encountered in granular-type systems are considered. The system is treated within the framework of multibody dynamics. It is shown that for an arbitrary cluster topology the governing equations can be given in an explicit scalar from. The derivation is based on the D'Alembert principle, on inertial coordinate system for each body and direct utilization of the path matrix describing the topology. The scalar form of the equations is important in computer simulations of flow of granular-type materials. An illustrative example of a three-body system is given.