
JOURNAL OF THE
CHUNGCHEONG MATHEMATICAL SOCIETY
Volume 19, No.2, June 2006

EXISTENCE OF PERIODIC SOLUTIONS TO
LIAPUNOV CHARACTERISTIC INDEX EQUATIONS

Han You Wang*, Jun Ouyang** and Zhuo Yao***

Abstract. In this paper, a numerical programming for Liapunov
index of differential equations with periodic coefficients depending
on parameters is given. The associated equations are given at first,
then existence of periodic solutions to the associated equations is
proved in this paper. And we compute periodic solution u(t) of
the associated equations. Finally, we give the error of approximate
calculation.

1. Introduction

The number
λx(t) = lim

x→∞ =
1
t

ln x(t),

where x(t) 6= 0 is a solution of the equation ẋ(t) = A(t)x(t) is called the
Liapunov characteristic index (LCI) of x(t). The complete resolution of
LCI is reduced to the following questions:

1) The existence of LCI and how many are they?
2) Practicable computation of LCI.
The answer of the first question was given by Liapunov [4, 7]. His

result generalized many authors about the conditions on the equation.
While the second question far more from complete resolution even in the
special case that A(t) ≡ A(t + T ), that is, the periodic case. But in the
point of view of approximate computation methods, it is not so difficult
to solve the second question. Indeed, we can calculate the fundamental
solution matrix of the equation ẋ(t) = A(t)x(t) with whatever small
error we wish, and then approximately compute the LCI by its definition.
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However, the previous procedures are valid in practice only in the case
that A(t) ≡ A(0), i.e., the coefficient matrix A(t) is a constant matrix.
In this paper, we introduce a effective method to calculate the LCI for
scalar equation

(1) εẍ(t) + [p1 + c1(t)]ẋ(t) = [p2 + c2(t)]x(t)

where ε 6= 0, pj = pj(ε)

(2) cj(t) = cj(t, ε) =
N(ε)∑

|r|=1

cj,r(ε)exp(irt),

j = 1, 2, and pj(ε), Nj(ε), cj,r(ε) are all independent of t.

If we assume that
x = e−

∫ c1(t)
2ε

dt ·W
then we get

ẋ = e−
∫ c1(t)

2ε
dt · −c1(t)

2ε
· w + e−

∫ c1(t)
2ε

dt · ẇ
and

ẍ = e−
∫ c1(t)

2ε
dt[(

−c1(t)
2ε

)2w + (
−c′1(t)

2ε
)w − c1(t)

ε
ẇ + ẅ].

And (1) becomes

εẅ + p1ẇ = [
c′1(t)
2ε

− c2
1(t)
4ε2

+ c1(t)(p1 + c1(t)) + p2 + c2(t)]w.

Thus, it is sufficient to study the case that c1(t) ≡ 0 in the following.

2. The associated equations

Assuming thatx = exp(w), ẇ = u, we have the equation

(3) εu̇ + εu2 + p1u = p2 + c2(t).

If u(t) is a 2π-periodic solution of (3). then we can set

(4) u(t) =
∞∑

|m|=1

umexp(imt) + u0

and

w(t) =
∞∑

|m|=1

um

cm
exp(imt) + u0t + w0,

where the constants u0, um and w0 are independent of t.
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Lemma 1. If u(t) is a 2π-periodic solution of (3) and (4) holds, then
Reu0 is a LCI for equation (1).

Proof. Since u(t) is a 2π-periodic solution of (3),

x(t) = exp(w(t)) = e
∫ t
0 u(s)ds+w(0)

= e

∞∑
|m|=1

um
∫ t
0 exp(ims)ds+u0t+w(0)

is a solution of (1). We have

1
t
ln|x(t)| = 1

t
Re|

∞∑

|m|=1

um

∫ t

0
exp(ims)ds + u0t + w(0)|

Note that ∞∑

|m|=1

um

∫ t

0
exp(ims)ds + w(0)

is bounded, it follows that

λx(t) = lim
t→∞

1
t

ln x(t) = Reu0.

In order to find 2π-periodic solution to equation (3) and, then calculate
the number u0, we consider the associated equations

(5) εŻ(k) + ε
k∑

p=0

Z(p)Z(k−p) + p1Z(k) = b(k), k = 0, 1, 2 · · ·

where b0 = p2, b1 = c1(t), b(k) = 0, k ≥ 2.

3. Existence of periodic solutions to the associated equa-
tions

If k = 0, then the associated equation (5) will take the form

(6) εŻ(0) + ε(Z(0))
2 + p1Z(0) = p2

Obviously, equation (6) has two 2π-periodic solutions:−p1+α
2ε and −p1−α

2ε ,
where α =

√
p2
1 + 4p2ε, and α 6= 0.

Let Z
(j)
(0) , j = 1, 2, be one of the two 2π-periodic solutions of (6),

respectively. Obviously, ifα = 0, then Z
(1)
(0) ≡ Z

(2)
(0) . If k = 1, then (5)

will take the form

(7) εŻ(1) + (−1)jαZ(1) = c2(t), j = 1, 2.
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For fixed j, the equation (7) has one and only one 2π-periodic solution

(8) Z
(j)
(1)(t) =

N(ε)∑

|m|=1

c2,m(ε)(εim + (−1)jα)−1exp(imt)

if the condition

(9) εim± α 6= 0,m = 0,±1,±2, · · ·
holds. If k ≥ 2, then we have

(10) εż(k) + (−1)jz(k) = −ε
k−1∑

p=1

Z
(p)
(j) Z

(k−p)
(j) := fj,k

The equation (10) has one and only one 2π-periodic solution for fixed j:

(11) Z
(j)
(k) =

N(ε,k)∑

|m|=1

fk,m(ε + α)−1exp(imt), j = 1, 2,

if (9) holds true.

4. Periodic solution u(t) of (3)

Let

(12) u(j)(t) =
∞∑

k=0

Z
(j)
(k), j = 1, 2.

Let A be the Banach space of 2π-periodic functions with the norm

‖v‖ :=
∞∑

|m|=0

|vm| < ∞

vm =
1
2π

∫ 2π

0
v(t)exp(−imt)dt.

It is clear that
Z

(j)
(k) ∈ A, j = 1, 2, k = 2, 3, · · · .

Lemma 2. lk =
k−1∑
p=1

1
p2

k2

(k−p)2
< 6, k = 2, 3 · · · .
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Proof. It is easy to calculate that l2 = 4, l3 = 4.5, l4 ≈ 4.555, l5 ≈
4.514, l6 ≈ 4.449, l7 ≈ 4.383, l8 ≈ 4.320, l9 ≈ 4.263.

If k ≥ 10, then we have

k2

(k − 1)2
≤ 100

81
,

k2

(k − 2)2
≤ 100

(64
,

k2

(k − 3)

2

≤ 100
49

.

It follows that

lk =
k−1∑
p=0

1
p2

k2

(k−p)2
≤

2 k−1
2∑

p=1

1
p2

k2

(k−p)2

≤ 2{100
81 + 1

4 · 100
64 + 1

9 · 100
49 +

2 k−1
2∑

p=3

1
p2

k2

4 }

≤ 2{100
81 + 1

4 · 100
64 + 1

9 · 100
49 + 4[

∞∑
p=1

1
p2 − (1 + 1

4 + 1
9)]}

≤ 2{4 · π
6 − [5 + 4

9 − 100
81 − 25

64 − 100
441 ]} ≈ 5.974 ≤ 6, (k ≥ 10)

The proof of the lemma is complete.
Let ∞∑

p=1

B
(j)
0 = min

m∈Z
|εim + (−1)jα|, B(j)

1 = ‖Z(j)
1 ‖.

Lemma 3. If 6|ε|B(j)
1 ≤ B

(j)
0 , then the series (12) is uniformly

converges in (−∞, +∞).

Proof. Assuming that for p ∈ [1, k − 1], the estimation

(13) ‖Z(j)
p ‖ ≤ B

(j)
1 (dp−1

j )/p2

holds true, where dj = 6|ε|B(j)
1 /B

(j)
0 , we will prove that (13) is valid for

each positive integer k.
By (11),(12)and Lemma 2, we have

‖Z(j)
k ‖ ≤ 1

B
(j)
0

‖f(k)‖ ≤ |ε|
B

(j)
0

k−1∑
p=1

‖Z(j)
p ‖‖Z(j)

k−p‖

≤ B
(j)
1 (B

(j)
1

B
(j)
0

)dk−2
j (

k−1∑
p=1

(p−2)(k − p)−2)

≤ B
(j)
1 (6B

(j)
1

B
(j)
0

)dk−2
j /k2 = B

(j)
1 dk−1

j /k2.

Since (13) is obviously true for k = 1, it follows by induction that (13)
is valid for every positive integer k.

Therefore, the series (12) converges in norm of A, that is, it converges
absolutely and uniformly.
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Let u(j)(t)j = 1, 2, be the limit function of the series (12).
Lemma 4. If 6|ε|B(j)

1 ≤ B
(j)
0 , then u(j)(t), j = 1, 2 is a 2π-periodic

solution of equation (3).

Proof. Let

U (j)
n =

n∑

k=0

Z
(j)
(k), j = 1, 2.

We have

εU̇ (j)
n + ε

n∑

k=0

k∑

p=0

Z(j)
p Zj

k−p + p1U
(j)
n = p2 + c2(t), n ≥ 2.

Then
(14)

εU
(j)
n (t) = εU j

n(0) +
∫ t
0{[p2 + c2(s)]− p1U

(j)
n (s)− ε

n∑
k=0

k∑
p=0

Z
(j)
p (s)Z(j)

k−p(s)}ds

= εU
(j)
n (0) +

∫ t
0{[p2 + c2(s)]− p1U

(j)
n (s)− ε[(U (j)

n (s))2

+
n∑

k=0

k∑
p=0

Z
(j)
p (s)Zj

k−p(s)− (U (j)
n (s))2]}ds

One can check that

|(
n∑

k=0

Z
(
kj))

2 −
n∑

k=0

k∑
p=0

Z
(j)
p Zj

k−p| ≤ |
n∑

p=1
[Z(j)

p (
p−1∑
k=0

Z
(j)
n−k)]|

≤
n∑

p=1
[|Zj

p|(
p−1∑
k=0

|Z(j)
n−k|)]

≤
[n
2
+1]∑

p=1
[|Z(j)

p |(
p−1∑
k=0

|Z(j)
n−k|)] +

n∑
p=[n

2
+1]

[|Z(j)
p |(

p−1∑
k=0

|Z(j)
n−k|)]

= (
n∑

p=1
|Z(j)

p |)2 − (
[n
2
]∑

p=1
|Z(j)

p |)2

= (
∞∑

p=1
|Z(j)

p |)2 − (
[n
2
]∑

p=1
|Z(j)

p |)2

By Lemma 3 we have

(
∞∑

p=1
|Z(j)

p |)2 − (
[n
2
]∑

p=1
|Z(j)

p |)2 → 0, n →∞

It follows that

|(
∞∑

p=1
|Z(j)

p |)2 −
n∑

k=0

k∑
p=0

Z
(j)
p Zj

k−p| → 0, n →∞
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From (14), letting n →∞, we get

εU (j)
n (t) = εU (j)

n (0) +
∫ t

0
{[p2 + c2(s)]− p1U

(j)
n (s)− ε(U (j)(s))2}ds.

Hence, U (j) is a solution of equation (3), and it is obviously 2π-periodic.
The proof is complete.

5. Approximate calculation of LCI

By Lemma 1 we assert that
∞∑

k=0

1
2π

∫ 2π

0
ReZ

(j)
k (t)dt, j = 1, 2,

is a LCI for equation (1), if 6|ε|B(j)
1 ≤ B

(j)
0 , j = 1, 2. We can take

(15)
M∑

k=0

1
2π

∫ 2π

0
ReZ

(j)
k (t)dt, j = 1, 2,

as an approximate value of LCI.
Assume that

Zj
k(t) =

∞∑

|m|=0

Z
(j)
k,m exp imt, k = 0, 1, 2, · · · ,

where

Z
(j)
k,m =

1
2π

∫ 2π

0
Z

(j)
k exp imt(t)dt, j = 1, 2, k, m = 0, 1, 2, · · · .

By (15) the approximate value of LCI is

(16) Re(
M∑

k=0

Z
(j)
k,0).

From (8) we have Z
(j)
1,m = 0 for |m| ∈ [1, N(ε)]. Therefore, the sequence

{Z(j)
1,m : m ∈ Z} is known. From (11) we get

(17) (εim + (−1)jα)Z(j)
k,m = −ε

k−1∑

p=1

(
N(ε,p)∑

|l|=0

Z
(j)
p,l Z

(j)
k−p,m−l), k = 2, 3, · · · .

Since there are only finite members deferent from zero in the sequence
{Z(j)

1,m : m ∈ Z}, all sums in the formula (17) are finite. Thus, from the
point of view of approximate calculation, it is not difficult to find all
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sequences {Z(j)
k,m : m ∈ Z}, k = 2, 3, · · · ,M , and then calculate the value

of Re(
M∑

k=0

), the approximate value of LCI for equation (1).

Since equation (1) has two and only two LCIs, by our method we can
find the approximate values of the LCIs of equation (1).

6. The error of approximate calculation

We assume that dj = 6|ε|B(j)
1 ≤ B

(j)
0 ≤ 1, j = 1, 2.

Lemma 5.
∞∑

p=M+1

p−2 ≤ 1
M

Proof.
∞∑

p=M+1

p−2 =
∞∑

p=M+1

1
p2
≤

∞∑

p=M+1

1
(p− 1)p

=
∞∑

p=M+1

[
1

p− 1
− 1

p
] =

1
M

Since ‖Z(j)
k ‖ ≤ B

(j)
1 dk−1

j , we have

|
∞∑

k=0

1
2π

∫ 2π

0
ReZ

(j)
K (t)dt−

M∑

k=0

1
2π

∫ 2π

0
ReZ

(j)
k (t)dt| ≤

≤
∞∑

k=M+1

1
2π

∫ 2π

0
|Z(j)

k (t)|dt ≤
∞∑

k=M+1

‖Z(j)
K ‖

≤ B
(j)
1 dM

j

∞∑

p=M+1

p−2 ≤ B
(j)
1 dM

j

M
, j = 1, 2.

The error of approximate calculation is estimated.
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