EXISTENCE OF PERIODIC SOLUTIONS TO LIAPUNOV CHARACTERISTIC INDEX EQUATIONS

Han You Wang*, Jun Ouyang** and Zhuo Yao***

Abstract

In this paper, a numerical programming for Liapunov index of differential equations with periodic coefficients depending on parameters is given. The associated equations are given at first, then existence of periodic solutions to the associated equations is proved in this paper. And we compute periodic solution $u(t)$ of the associated equations. Finally, we give the error of approximate calculation.

1. Introduction

The number

$$
\lambda_{x(t)}=\varlimsup_{x \rightarrow \infty}=\frac{1}{t} \ln x(t),
$$

where $x(t) \neq 0$ is a solution of the equation $\dot{x}(t)=A(t) x(t)$ is called the Liapunov characteristic index (LCI) of $x(t)$. The complete resolution of LCI is reduced to the following questions:

1) The existence of LCI and how many are they?
2) Practicable computation of LCI.

The answer of the first question was given by Liapunov [4, 7]. His result generalized many authors about the conditions on the equation. While the second question far more from complete resolution even in the special case that $A(t) \equiv A(t+T)$, that is, the periodic case. But in the point of view of approximate computation methods, it is not so difficult to solve the second question. Indeed, we can calculate the fundamental solution matrix of the equation $\dot{x}(t)=A(t) x(t)$ with whatever small error we wish, and then approximately compute the LCI by its definition.

[^0]However, the previous procedures are valid in practice only in the case that $A(t) \equiv A(0)$, i.e., the coefficient matrix $A(t)$ is a constant matrix. In this paper, we introduce a effective method to calculate the LCI for scalar equation

$$
\begin{equation*}
\varepsilon \ddot{x}(t)+\left[p_{1}+c_{1}(t)\right] \dot{x}(t)=\left[p_{2}+c_{2}(t)\right] x(t) \tag{1}
\end{equation*}
$$

where $\varepsilon \neq 0, p_{j}=p_{j}(\varepsilon)$

$$
\begin{equation*}
c_{j}(t)=c_{j}(t, \varepsilon)=\sum_{|r|=1}^{N(\varepsilon)} c_{j, r}(\varepsilon) \exp (i r t) \tag{2}
\end{equation*}
$$

$j=1,2$, and $p_{j}(\varepsilon), N_{j}(\varepsilon), c_{j, r}(\varepsilon)$ are all independent of t.
If we assume that

$$
x=e^{-\int \frac{c_{1}(t)}{2 \varepsilon} d t} \cdot W
$$

then we get

$$
\dot{x}=e^{-\int \frac{c_{1}(t)}{2 \varepsilon} d t} \cdot \frac{-c_{1}(t)}{2 \varepsilon} \cdot w+e^{-\int \frac{c_{1}(t)}{2 \varepsilon} d t} \cdot \dot{w}
$$

and

$$
\ddot{x}=e^{-\int \frac{c_{1}(t)}{2 \varepsilon} d t}\left[\left(\frac{-c_{1}(t)}{2 \varepsilon}\right)^{2} w+\left(\frac{-c_{1}^{\prime}(t)}{2 \varepsilon}\right) w-\frac{c_{1}(t)}{\varepsilon} \dot{w}+\ddot{w}\right] .
$$

And (1) becomes

$$
\varepsilon \ddot{w}+p_{1} \dot{w}=\left[\frac{c_{1}^{\prime}(t)}{2 \varepsilon}-\frac{c_{1}^{2}(t)}{4 \varepsilon^{2}}+c_{1}(t)\left(p_{1}+c_{1}(t)\right)+p_{2}+c_{2}(t)\right] w .
$$

Thus, it is sufficient to study the case that $c_{1}(t) \equiv 0$ in the following.

2. The associated equations

Assuming that $x=\exp (w), \dot{w}=u$, we have the equation

$$
\begin{equation*}
\varepsilon \dot{u}+\varepsilon u^{2}+p_{1} u=p_{2}+c_{2}(t) \tag{3}
\end{equation*}
$$

If $u(t)$ is a 2π-periodic solution of (3). then we can set

$$
\begin{equation*}
u(t)=\sum_{|m|=1}^{\infty} u_{m} \exp (i m t)+u_{0} \tag{4}
\end{equation*}
$$

and

$$
w(t)=\sum_{|m|=1}^{\infty} \frac{u_{m}}{c_{m}} \exp (i m t)+u_{0} t+w_{0}
$$

where the constants u_{0}, u_{m} and w_{0} are independent of t.

Lemma 1. If $u(t)$ is a 2π-periodic solution of (3) and (4) holds, then $R e u_{0}$ is a LCI for equation (1).

Proof. Since $u(t)$ is a 2π-periodic solution of (3),

$$
\begin{array}{r}
x(t)=\exp (w(t))=e^{\int_{0}^{t} u(s) d s+w(0)} \\
=e^{\sum^{\sum_{m \mid=1}^{\infty} u_{m} \int_{0}^{t} \exp (i m s) d s+u_{0} t+w(0)}}
\end{array}
$$

is a solution of (1). We have

$$
\frac{1}{t} l n|x(t)|=\frac{1}{t} R e\left|\sum_{|m|=1}^{\infty} u_{m} \int_{0}^{t} \exp (i m s) d s+u_{0} t+w(0)\right|
$$

Note that

$$
\sum_{|m|=1}^{\infty} u_{m} \int_{0}^{t} \exp (i m s) d s+w(0)
$$

is bounded, it follows that

$$
\lambda_{x(t)}=\varlimsup_{t \rightarrow \infty} \frac{1}{t} \ln x(t)=R e u_{0}
$$

In order to find 2π-periodic solution to equation (3) and, then calculate the number u_{0}, we consider the associated equations

$$
\begin{equation*}
\left.\varepsilon \dot{Z}_{(} k\right)+\varepsilon \sum_{p=0}^{k} Z_{(p)} Z_{(k-p)}+p_{1} Z_{(k)}=b_{(k)}, k=0,1,2 \cdots \tag{5}
\end{equation*}
$$

where $b_{0}=p_{2}, b_{1}=c_{1}(t), b_{(k)}=0, k \geq 2$.

3. Existence of periodic solutions to the associated equations

If $k=0$, then the associated equation (5) will take the form

$$
\begin{equation*}
\varepsilon \dot{Z}_{(}(0)+\varepsilon\left(Z_{(0)}\right)^{2}+p_{1} Z_{(0)}=p_{2} \tag{6}
\end{equation*}
$$

Obviously, equation (6) has two 2π-periodic solutions: $\frac{-p_{1}+\alpha}{2 \varepsilon}$ and $\frac{-p_{1}-\alpha}{2 \varepsilon}$, where $\alpha=\sqrt{p_{1}^{2}+4 p_{2} \varepsilon}$, and $\alpha \neq 0$.

Let $Z_{(0)}^{(j)}, j=1,2$, be one of the two 2π-periodic solutions of (6), respectively. Obviously, if $\alpha=0$, then $Z_{(0)}^{(1)} \equiv Z_{(0)}^{(2)}$. If $k=1$, then (5) will take the form

$$
\begin{equation*}
\varepsilon \dot{Z}_{(1)}+(-1)^{j} \alpha Z_{(1)}=c_{2}(t), j=1,2 \tag{7}
\end{equation*}
$$

For fixed j, the equation (7) has one and only one 2π-periodic solution

$$
\begin{equation*}
Z_{(1)}^{(j)}(t)=\sum_{|m|=1}^{N(\varepsilon)} c_{2, m}(\varepsilon)\left(\varepsilon i m+(-1)^{j} \alpha\right)^{-1} \exp (i m t) \tag{8}
\end{equation*}
$$

if the condition

$$
\begin{equation*}
\varepsilon i m \pm \alpha \neq 0, m=0, \pm 1, \pm 2, \cdots \tag{9}
\end{equation*}
$$

holds. If $k \geq 2$, then we have

$$
\begin{equation*}
\varepsilon \dot{z}_{(k)}+(-1)^{j} z_{(k)}=-\varepsilon \sum_{p=1}^{k-1} Z_{(j)}^{(p)} Z_{(j)}^{(k-p)}:=f_{j, k} \tag{10}
\end{equation*}
$$

The equation (10) has one and only one 2π-periodic solution for fixed j :

$$
\begin{equation*}
Z_{(k)}^{(j)}=\sum_{|m|=1}^{N(\varepsilon, k)} f_{k, m}(\varepsilon+\alpha)_{-1} \exp (i m t), j=1,2 \tag{11}
\end{equation*}
$$

if (9) holds true.

4. Periodic solution $u(t)$ of (3)

Let

$$
\begin{equation*}
u^{(j)}(t)=\sum_{k=0}^{\infty} Z_{(k)}^{(j)}, j=1,2 \tag{12}
\end{equation*}
$$

Let A be the Banach space of 2π-periodic functions with the norm

$$
\begin{gathered}
\|v\|:=\sum_{|m|=0}^{\infty}\left|v_{m}\right|<\infty \\
v_{m}=\frac{1}{2 \pi} \int_{0}^{2 \pi} v(t) \exp (-i m t) d t
\end{gathered}
$$

It is clear that

$$
Z_{(k)}^{(j)} \in A, j=1,2, k=2,3, \cdots
$$

Lemma 2. $l_{k}=\sum_{p=1}^{k-1} \frac{1}{p^{2}} \frac{k^{2}}{(k-p)^{2}}<6, k=2,3 \cdots$.

Proof. It is easy to calculate that $l_{2}=4, l_{3}=4.5, l_{4} \approx 4.555, l_{5} \approx$ $4.514, l_{6} \approx 4.449, l_{7} \approx 4.383, l_{8} \approx 4.320, l_{9} \approx 4.263$.

If $k \geq 10$, then we have

$$
\frac{k^{2}}{(k-1)^{2}} \leq \frac{100}{81}, \frac{k^{2}}{(k-2)^{2}} \leq \frac{100}{(64},{\frac{k^{2}}{(k-3)}}^{2} \leq \frac{100}{49}
$$

It follows that

$$
\begin{aligned}
l_{k} & =\sum_{p=0}^{k-1} \frac{1}{p^{2}} \frac{k^{2}}{(k-p)^{2}} \leq \sum_{p=1}^{2 \frac{k-1}{2}} \frac{1}{p^{2}} \frac{k^{2}}{(k-p)^{2}} \\
& \leq 2\left\{\frac{100}{81}+\frac{1}{4} \cdot \frac{100}{64}+\frac{1}{9} \cdot \frac{100}{49}+\sum_{p=3}^{2 \frac{k-1}{2}} \frac{1}{p^{2}} \frac{k^{2}}{4}\right\} \\
& \leq 2\left\{\frac{100}{81}+\frac{1}{4} \cdot \frac{100}{64}+\frac{1}{9} \cdot \frac{100}{49}+4\left[\sum_{p=1}^{\infty} \frac{1}{p^{2}}-\left(1+\frac{1}{4}+\frac{1}{9}\right)\right]\right\} \\
& \leq 2\left\{4 \cdot \frac{\pi}{6}-\left[5+\frac{4}{9}-\frac{100}{81}-\frac{25}{64}-\frac{100}{441}\right]\right\} \approx 5.974 \leq 6,(k \geq 10)
\end{aligned}
$$

The proof of the lemma is complete.
Let

$$
\sum_{p=1}^{\infty} B_{0}^{(j)}=\min _{m \in Z}\left|\varepsilon i m+(-1)^{j} \alpha\right|, B_{1}^{(j)}=\left\|Z_{1}^{(j)}\right\|
$$

Lemma 3. If $6|\varepsilon| B_{1}^{(j)} \leq B_{0}^{(j)}$, then the series (12) is uniformly converges in $(-\infty,+\infty)$.

Proof. Assuming that for $p \in[1, k-1]$, the estimation

$$
\begin{equation*}
\left\|Z_{p}^{(j)}\right\| \leq B_{1}^{(j)}\left(d_{j}^{p-1}\right) / p^{2} \tag{13}
\end{equation*}
$$

holds true, where $d_{j}=6|\varepsilon| B_{1}^{(j)} / B_{0}^{(j)}$, we will prove that (13) is valid for each positive integer k.

By (11),(12) and Lemma 2, we have

$$
\begin{aligned}
\left\|Z_{k}^{(j)}\right\| & \leq \frac{1}{B_{0}^{(j)}}\left\|f_{(k)}\right\| \leq \frac{|\varepsilon|}{B_{0}^{(j)}} \sum_{p=1}^{k-1}\left\|Z_{p}^{(j)}\right\|\left\|Z_{k-p}^{(j)}\right\| \\
& \leq B_{1}^{(j)}\left(\frac{B_{1}^{(j)}}{B_{0}^{(j)}}\right) d_{j}^{k-2}\left(\sum_{p=1}^{k-1}\left(p^{-2}\right)(k-p)^{-2}\right) \\
& \leq B_{1}^{(j)}\left(6 \frac{B_{1}^{(j)}}{B_{0}^{(j)}}\right) d_{j}^{k-2} / k^{2}=B_{1}^{(j)} d_{j}^{k-1} / k^{2}
\end{aligned}
$$

Since (13) is obviously true for $k=1$, it follows by induction that (13) is valid for every positive integer k.

Therefore, the series (12) converges in norm of A, that is, it converges absolutely and uniformly.

Let $u^{(j)}(t) j=1,2$, be the limit function of the series (12).
Lemma 4. If $6|\varepsilon| B_{1}^{(j)} \leq B_{0}^{(j)}$, then $u^{(j)}(t), j=1,2$ is a 2π-periodic solution of equation (3).

Proof. Let

$$
U_{n}^{(j)}=\sum_{k=0}^{n} Z_{(k)}^{(j)}, j=1,2
$$

We have

$$
\varepsilon \dot{U}_{n}^{(j)}+\varepsilon \sum_{k=0}^{n} \sum_{p=0}^{k} Z_{p}^{(j)} Z_{k-p}^{j}+p_{1} U_{n}^{(j)}=p_{2}+c_{2}(t), n \geq 2
$$

Then

$$
\begin{align*}
\varepsilon U_{n}^{(j)}(t) & =\varepsilon U_{n}^{j}(0)+\int_{0}^{t}\left\{\left[p_{2}+c_{2}(s)\right]-p_{1} U_{n}^{(j)}(s)-\varepsilon \sum_{k=0}^{n} \sum_{p=0}^{k} Z_{p}^{(j)}(s) Z_{k-p}^{(j)}(s)\right\} d s \tag{14}\\
& =\varepsilon U_{n}^{(j)}(0)+\int_{0}^{t}\left\{\left[p_{2}+c_{2}(s)\right]-p_{1} U_{n}^{(j)}(s)-\varepsilon\left[\left(U_{n}^{(j)}(s)\right)^{2}\right.\right. \\
& \left.\left.+\sum_{k=0}^{n} \sum_{p=0}^{k} Z_{p}^{(j)}(s) Z_{k-p}^{j}(s)-\left(U_{n}^{(j)}(s)\right)^{2}\right]\right\} d s
\end{align*}
$$

One can check that

$$
\begin{aligned}
& \left.\mid\left(\sum_{k=0}^{n} Z_{k}^{(} j\right)\right)^{2}-\sum_{k=0}^{n} \sum_{p=0}^{k} Z_{p}^{(j)} Z_{k-p}^{j}\left|\leq\left|\sum_{p=1}^{n}\left[Z_{p}^{(j)}\left(\sum_{k=0}^{p-1} Z_{n-k}^{(j)}\right)\right]\right|\right. \\
& \leq \sum_{p=1}^{n}\left[\left|Z_{p}^{j}\right|\left(\sum_{k=0}^{p-1}\left|Z_{n-k}^{(j)}\right|\right)\right] \\
& \leq \sum_{p=1}^{\left[\frac{n}{2}+1\right]}\left[\left|Z_{p}^{(j)}\right|\left(\sum_{k=0}^{p-1}\left|Z_{n-k}^{(j)}\right|\right)\right]+\sum_{p=\left[\frac{n}{2}+1\right]}^{n}\left[\left|Z_{p}^{(j)}\right|\left(\sum_{k=0}^{p-1}\left|Z_{n-k}^{(j)}\right|\right)\right] \\
& =\left(\sum_{p=1}^{n}\left|Z_{p}^{(j)}\right|\right)^{2}-\left(\sum_{p=1}^{\left[\frac{n}{2}\right]}\left|Z_{p}^{(j)}\right|\right)^{2} \\
& =\left(\sum_{p=1}^{\infty}\left|Z_{p}^{(j)}\right|\right)^{2}-\left(\sum_{p=1}^{\left[\frac{n}{2}\right]}\left|Z_{p}^{(j)}\right|\right)^{2}
\end{aligned}
$$

By Lemma 3 we have

$$
\left(\sum_{p=1}^{\infty}\left|Z_{p}^{(j)}\right|\right)^{2}-\left(\sum_{p=1}^{\left[\frac{n}{2}\right]}\left|Z_{p}^{(j)}\right|\right)^{2} \rightarrow 0, \quad n \rightarrow \infty
$$

It follows that

$$
\left|\left(\sum_{p=1}^{\infty}\left|Z_{p}^{(j)}\right|\right)^{2}-\sum_{k=0}^{n} \sum_{p=0}^{k} Z_{p}^{(j)} Z_{k-p}^{j}\right| \rightarrow 0, \quad n \rightarrow \infty
$$

From (14), letting $n \rightarrow \infty$, we get

$$
\varepsilon U_{n}^{(j)}(t)=\varepsilon U_{n}^{(j)}(0)+\int_{0}^{t}\left\{\left[p_{2}+c_{2}(s)\right]-p_{1} U_{n}^{(j)}(s)-\varepsilon\left(U^{(j)}(s)\right)^{2}\right\} d s
$$

Hence, $U^{(j)}$ is a solution of equation (3), and it is obviously 2π-periodic. The proof is complete.

5. Approximate calculation of LCI

By Lemma 1 we assert that

$$
\sum_{k=0}^{\infty} \frac{1}{2 \pi} \int_{0}^{2 \pi} R e Z_{k}^{(j)}(t) d t, j=1,2
$$

is a LCI for equation (1), if $6|\varepsilon| B_{1}^{(j)} \leq B_{0}^{(j)}, j=1,2$. We can take

$$
\begin{equation*}
\sum_{k=0}^{M} \frac{1}{2 \pi} \int_{0}^{2 \pi} \operatorname{Re} Z_{k}^{(j)}(t) d t, j=1,2 \tag{15}
\end{equation*}
$$

as an approximate value of LCI.
Assume that

$$
Z_{k}^{j}(t)=\sum_{|m|=0}^{\infty} Z_{k, m}^{(j)} \exp i m t, k=0,1,2, \cdots
$$

where

$$
Z_{k, m}^{(j)}=\frac{1}{2 \pi} \int_{0}^{2 \pi} Z_{k}^{(j)} \exp i m t(t) d t, j=1,2, k, m=0,1,2, \cdots
$$

By (15) the approximate value of LCI is

$$
\begin{equation*}
\operatorname{Re}\left(\sum_{k=0}^{M} Z_{k, 0}^{(j)}\right) \tag{16}
\end{equation*}
$$

From (8) we have $Z_{1, m}^{(j)}=0$ for $|m| \in[1, N(\varepsilon)]$. Therefore, the sequence $\left\{Z_{1, m}^{(j)}: m \in \mathbf{Z}\right\}$ is known. From (11) we get

$$
\begin{equation*}
\left(\varepsilon i m+(-1)^{j} \alpha\right) Z_{k, m}^{(j)}=-\varepsilon \sum_{p=1}^{k-1}\left(\sum_{|l|=0}^{N(\varepsilon, p)} Z_{p, l}^{(j)} Z_{k-p, m-l}^{(j)}\right), k=2,3, \cdots \tag{17}
\end{equation*}
$$

Since there are only finite members deferent from zero in the sequence $\left\{Z_{1, m}^{(j)}: m \in \mathbf{Z}\right\}$, all sums in the formula (17) are finite. Thus, from the point of view of approximate calculation, it is not difficult to find all
sequences $\left\{Z_{k, m}^{(j)}: m \in \mathbf{Z}\right\}, k=2,3, \cdots, M$, and then calculate the value of $\operatorname{Re}\left(\sum_{k=0}^{M}\right)$, the approximate value of LCI for equation (1).

Since equation (1) has two and only two LCIs, by our method we can find the approximate values of the LCIs of equation (1).

6. The error of approximate calculation

We assume that $d_{j}=6|\varepsilon| B_{1}^{(j)} \leq B_{0}^{(j)} \leq 1, j=1,2$.
Lemma 5. $\sum_{p=M+1}^{\infty} p^{-2} \leq \frac{1}{M}$
Proof.
$\sum_{p=M+1}^{\infty} p^{-2}=\sum_{p=M+1}^{\infty} \frac{1}{p^{2}} \leq \sum_{p=M+1}^{\infty} \frac{1}{(p-1) p}=\sum_{p=M+1}^{\infty}\left[\frac{1}{p-1}-\frac{1}{p}\right]=\frac{1}{M}$
Since $\left\|Z_{k}^{(j)}\right\| \leq B_{1}^{(j)} d_{j}^{k-1}$, we have

$$
\begin{aligned}
& \left|\sum_{k=0}^{\infty} \frac{1}{2 \pi} \int_{0}^{2 \pi} \operatorname{Re} Z_{K}^{(j)}(t) d t-\sum_{k=0}^{M} \frac{1}{2 \pi} \int_{0}^{2 \pi} R e Z_{k}^{(j)}(t) d t\right| \leq \\
& \leq \sum_{k=M+1}^{\infty} \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|Z_{k}^{(j)}(t)\right| d t \leq \sum_{k=M+1}^{\infty}\left\|Z_{K}^{(j)}\right\| \\
& \quad \leq B_{1}^{(j)} d_{j}^{M} \sum_{p=M+1}^{\infty} p^{-2} \leq \frac{B_{1}^{(j)} d_{j}^{M}}{M}, j=1,2
\end{aligned}
$$

The error of approximate calculation is estimated.

References

[1] R. Engelking, General Topology, Heldermann-Verlag, Berlin, 1989.
[2] A. Fedeli and A. Le. Donne, On good connected preimages, Topology Appl. 125 (2002), 489-496.
[3] Li Jin Jin and Jiang Shou Li, Concerning local countable-net and ss mapping, Math. Learned J. 42 (2006), 827-832.
[4] E.M. Mangino, Space of N-homogeneous polynomials between Fréchet spaces, Math. Anal. Appl. 297 (2004), 587-598.
[5] Lin Shou, Broad Sense Metric Space and Mapping, Scientific Publisher, BeiJing, 1995.

[^1]
[^0]: Received March 23, 2006.
 2000 Mathematics Subject Classification: Primary 65H05, 65H99.
 Key words and phrases: Liapunov, characteristic index.
 Supported by the Natural Science Foundation of P.R. China (10171010) and Jilin Province Distinguish Youth Science Foundation (No.10201005), Key Project on Science and Technology of Education Ministry of People's Republic of China (No.01061).

[^1]: [6] Lin Shou, Countable Cover of Point and Sequential Covering Mapping, Scientific Publisher, BeiJing, 2002.
 [7] Lin Shou, A note on 1-sequence-covering mappings, Advances in Math. 34 (2005), 473-476.

 Jilin Agriculture Engineering Vocational Technology College
 Changchun, Jilin 130000
 China
 **
 Department of Mathematics
 BeiHua University
 Jilin 132033
 China

 Department of Mathematics
 BeiHua University
 Jilin 132033
 China
 E-mail: yaozhuolw@yahoo.com.cn

