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INTERVAL OSCILLATION THEOREMS FOR SECOND-ORDER
DIFFERENTIAL EQUATIONS

ZHENG BIN

ABSTRACT. In this paper,we are concerned with a class of nonlinear second-
order differential equations with a nonlinear damping term and forcing
term:

(r(®k(z(8),2" (1)) + p(t)ka(x(), 2 (£))2'(t) + q(t) f (x(1)) = O.
Passage to more general class of equations allows us to remove a restrictive
condition usually imposed on the nonlinearity. And, as a consequence,
our results apply to wider classes of nonlinear differential equations.Some
illustrative examples are considered.
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1. Introduction

In this paper, we are concerned with the general nonlinear second-order dif-
ferential equation

(r(t)k1(z(8), 2 (1)) + p(t)ka((t), &' ()" (1) + q() f(2(t)) =0, (1)

where t > ty, and the functions r, ki, p, k2, ¢, f are to be specified in the
following text.

As usual, a function x : [fg,t1) — (—00,00), t1 > ty is called a solution
of Eq.(1) if z(t) satisfies Eq.(1) for all ¢ € [to,t1). In what follows, we always
assume that solutions of this equation are continuable, that is, they exist for
all t > tg. A nonconstant continuable solution z(¢t) of Eq.(1) is called proper if
sup;>, | #(t) |> 0. A proper solution z(t) is called oscillatory if it does not have
the largest zero. otherwise it is called non-oscillatory. Finally, we call Eq.(1)
oscillatory if all its proper solutions are oscillatory.
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Many papers on oscillation of differential equations are concerned with non-
linear differential equations with a linear damping term of the either form

(r@®e((z®)2" (1) + p(t)'(t) + a(t) f(z(t)) =0
or
(r(t)2'(t)) + p(t)2’(t) + a(t) f(2(2)) =0,
but only a few papers deal with equations with nonlinear damping term.The
relevant examples are equations

z"(t) + g(t, z(t), 2'(2))2' (1) + a(t) f(z(t)) = 0
and
2" (t) +q(t)b((t), 2'(1))2 () + p(t)z* (t)g(='(t)) = 0.
The general nonlinear differential equation with damping

(r@®)k(x(t), 2/ ()" (1)) + p(t)k(x(t), 2’ ()" (t) + (t) f((t)) = 0

considered recently by Ayanlar and Tiryaki[4] and present authors[5].

However, from the Sturm Separation Theorem, we see that oscillation is
only an interval property, i.e., if there exists a sequence of subinterval [a;, b;]
of [tp, ), a; — oo such that for each 4, there exists a solution of Eq.(1) that has
at least two zeros in {ay, b;], then every solution of Eq.(1) is oscillatory.

Using the thoughts mentioned above, Kwong and Zettle[6], El-sayed[7], Huang|[8]
and Kong[9] give some interval oscillation criteria for the linear differential equa-
tion z”(t) +q(t)z(t) = 0, t > to. Then Li and Agarwal [10],Zbaowen Zheng [11]
give some interval oscillation criteria for the nonlinear differential equation with
damped term

2"(t) + p(t)'(t) + () f(z(t)) =0, t > to.

In this paper,we will give some interval oscillation criterions of Eq.(1).
Hereafter, we assume that:

(i) the function r : [tg,00) — (0, c0) is continuously differential,ty > 0;

(if) p: [te, 00} — R is continuous, p(t) > 0 for all £ > ty, to > 0;

(iii) q: [to,00) — R is continuous, ¢(t) > 0 for all t > tq, tq > 0;

(iv) f:R — R is continuous and satisfies f{z)/x > K for some positive
constant K and for all z # 0

(v) ky: R? — R? is continuously differentiable and satisfies k%(u,v) <
avk; (u,v) for some positive constant «, all v € R/{0} and all » € R;

(vi) kg : R?> — R? is continuous and has the sign of v for all v € R/{0} and
alluv € R;

(vii) f € CYR,R]and zf(z) > 0 for  # 0, there exists f'(z) for z € R and
fi(z) > p>0forx #0.

The following lemma is useful in our main results.

Lemma [1, Lemma 1]. Suppose that the assumptions (i)-(vi) are satisfied.If
z(t) is a non-oscillatory solution of Eq.(1), then z(t)z'(t) < 0 for all large t.
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In the sequel we say that a function H = H (¢, s) belongs to a function class
X, denoted by H € X, if H € C(D, Ry) where D = {(t,8) : —00 < s <t < 00},
which satisfies H(t,t) = 0, H(t,s) > 0, t > s, and has continuous partial
derivatives dH/dt and OH/ds on D such that

0H

H
o _ ha(t,s)H(t,s)'/?, yle —ho(t, s)H(t,s)Y/2.

at

2. Interval oscillation results for f(z) without monotonicity
Theorem 2.1. Suppose that the main assumptions (i)-(vi) are satisfied, and
assume that there exists a function p € C([to,00), (0,00)) such that for some

H ¢ X and for each sufficiently large Ty > to, there exist a, b, ¢ with Ty < a <
¢ < b such that

1 ¢ 1 b
H—_(C7 a) /a H(S, G)KP(S)(I(S)dS + m /c H(b, S)Kp(s)q(s)ds

«a ¢ o b
> m/a r(s)p(s)Q1(s, a)ds + W/c r(s)p(s)Q3 (b, §)ds, (2)

where Qu(s, t) = hi(s,t)+(p(s)) 710/ (5)(H (s, £))/%, Qa(t,s) = ha(t, s)—(p(s))™"
o' (s)(H(t,s))'/2. Then Eq.(1) is oscillatory.

Proof. Suppose to the contrary. Let x(t) be a non-oscillatory solution of Eq.(1),
and suppose that there exists a T, > to such that z(t) # 0 for all ¢ > T,.
Without loss of generality, we may assume that x(¢) > 0 for all ¢ > T. Then,
by Lemma, this non-oscillatory solution x(t) is eventually monotonic and there
exists a Ty > T, such that «'(t) < 0 for all ¢t > Ty > Ti. Define

r(t)k (x(t), 2’ (1)

w(t) = p(t) =0 , 3)
differentiating (3) and using Eq.(1), we have
, P (t) ko (x(t), 2 (1)) (t)
w() < Sl - ppn XL

fl@®)  wi(t)

—p(t)q(t - : (4)
e aor®

Since by the assumptions of the theorem, the second summand in (4) is non-

positive and by Lemma, z'(t) < 0, we obtain

/ 2
p'(t) w(t)
OOV
for all ¢ > Ty. Multiplying both sides of the inequality (5) by H(t,s) and
integrating it with respect to s from ¢ to t for ¢t € [¢, b), we have

J2 H(t, 5)Kp(s)q(s)ds

§—ﬁH@@W@@+ﬁH@$%§MQ@—ﬁH@$

w'(t) < —Kp(t)g(t) +

w?(s)
ap(s)r(s)

ds
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2

1/2
H(t,ulc) - f{(i‘%) w(s)+%<ap(s>r<s)>1/2czz<t,s>} ds

ap(s)r(

+/ aP(Si?"(S) Q%(t, s)ds < H(t, c)wl(c) +/ &_;)(S_)@QQ(IS s)ds. (6)

c C

Dividing both sides of the inequality (6) by H(¢,c) and let t — b, we obtain

(s) Q3(b, s)ds. (7)

b b (0701831 M
——H(})’c) / H(b, )K p(s)q(s)ds < wic) + H(;c) / 4 ;

Next, we go back to (5). We multiply (5) by H(s,t), integrate it with respect
to s from t to ¢ for ¢t € {a, c], then we get that

/tc H(s,t)Kp(s)q(s)ds

PO [ )
o(s) V()48 f Hs ) o)

- /tc H{s, t)yw'(s)ds + )
. c . 1/2 ( 2
= —H(c,t)w(c) +/; (a-g(i—);%) w(s) + %(ap(s)r(s))l/le(s, t)} ds

+ /tc 91(5—2@@%(8, t)ds

< —H(c, t)w(c) + / Cap—('zm@f(s,t)ds. ®

Dividing both sides of the inequality (8) by H(c,t) and let t — a™, we obtain

E&{) / " H(s, ) Kp(s)a(s)ds < —w(o) + H(i, 3 / ) “’”(‘2"’(8) Q3 (s, a)ds(
9)

Adding (7) and (9), we have

. b
*H(ia) /a H(s,a)KP(S)Q(S)ds+F(1b,—C) / H(b, s)K p(s)q(s)ds

c o b ‘
< ———-—4H€; a)/a r(s)p(s)Q3(s, a)ds + W/C (8)p(s)Q5(b, s)ds,

which contradicts the assumption (2). Therefore, every solution of Eq.(1) is
oscillatory. The proof is complete. (W]

Theorem 2.2. Suppose that the main assumptions (i)-(vi) are satisfied, and
assume that there exists a function p € C'([to, ), (0,00)) such that

hmsup/t [H(s, DK p(s)q(s) ~ -—(i)ﬁ(-le(s )| ds >0 (10)

i—o0
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and

lim sup/l [H(t7 s)Kp(s)q(s) — %LiL@Qg(t, s)] ds >0 (11)

t—oo

for some H € X, and for each | > ty, then Eq.(1) is oscillatory.

Proof. For any T > tg, let a = T. In (10) we choose [ = a. Then there exists
¢ > a such that

[ e omaea - ot o] s> (12)
In (11) we chooase I = c¢. Then there exists b > ¢ such that

[ [ maa - L5069 as >0 (13)
Combining (12)Cand (13) we obtain (2), the conclusion thus comes from Theorem
1. The proof is complete. a

With the standard yet choice of the H (¢, s)
H(t,s)=(t—s)*, t>s>to,
where A > 1 is a constant, we obtain the following corollary.

Corollary 2.1. Suppose that the main assumptions (i)-(vi) are satisfied. Then
every solution of Eq.(1) is oscillatory provided that there exists a function p €
C([to, 00), (0,00)) such that for each | > to and for A > 1, the following two
inequalities hold:

lim sup 5= 1/ [S—l (8)—£(52ﬂ(8—l)x_2
2
x()\+ ; s—l)) ]ds>()
and
h?isup All/l I:t—SAKp ()_ﬂ(‘szs)(t—s))“2

7 2

X <)\+ p(8>(t—s)> ]ds>0.
p(s)

Theorem 2.3. Suppose that the main assumptions (i)-(vi) are satisfied, and

assume that there erists a function p € C1([ty,0),(0,00)) such that for any

u € Cla, b] satisfying v'(t) € L?[a,b] and u(a) = u(b) = 0, we have

b / 2
/ [u%smq(s)p(s) ~ ar(s)o(s) (u'<s> +Lue) ’;((j))) } ds > 0,

then Fq.(1) is oscillatory.

Proof. Suppose the contrary. Let z(¢) be a non-oscillatory solution of Eq.(1) and
suppose that there exists a T, > tg such that z(t) # 0 for all t > T... Without
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loss of generality, we may assume that z(¢) > 0 for all ¢ > T,. Similar to the

proof of Theorem 2.1, we multiply (5) by u?(t), integrate it with respect to s
from a to b and use u{e) = u(b) = 0, then we get

b
| @ Kas)p(e)ds

b b 25 b

< —/ u?(s)w'(s)ds —/ uz(s)ﬁéﬁds%—/ u?(s )w(s)p(( ))
b b 2, b

—2/ u(s)u'(s)w(s)ds /a uz(s)a—gﬂ(g%ds+[l u2(s)w(s)%(-(§)~)ds

--[ {{,/ (o) — VarI () + ute (‘s)))r

+ar<s)p<s)( ) + 2uls) 'f”’)))z}da

So

b / 2
/ [ (5)Kq(s)p(s) — ar(s) (s>( () + 3u(s) ((j))) }dsso,

which contradicts the assumption, so every solution of Eq.(1) is oscillatory. The
proof is complete. U

3. Interval oscillation results for f(z) with monotonicity

Theorem 3.1. Suppose that the main assumptions (i)-(v) and (vii) are satisfied,
and assume that there exists a function p € C*([to,00), (0, 00)) such that for
some H € X and for each sufficiently large Ty > to, there exist a, b, ¢ with
Ta < a<c<b such that

C 1 b
e, a)/a H(s,a)p(s)Q(s)ds+m/c H (b, s)p(s)q(s)ds

. b
> e [ OO s+ s [ @30, s

where Q1(s, 1), Q=2(t, s) are defined as Theorem 2.1. Then Eq.(1) is oscillatory.

Proof. Suppose the contrary. Let x(t) be a non-oscillatory solution of Eq.(1),
and suppose that there exists a T, > tp such that z(¢t) # 0 for all ¢ > T..
Without loss of generality, we may assume that z(t) > 0 for all ¢ > T,. Then,
by Lemma, this non-oscillatory solution z(t) is eventually monotonic and there
exists a Ty > T, such that z’(t) < 0 for all ¢ > Ty > T. Define

(1) (2(8), 7' (1))
) (14)

w(t) = p(t)
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Differentiating (14) and using Eq.(1), we have
B ka(2(t), 2'(t)2'(8) _ ()
w(t) — p(t)p(t) @) p(t)a(t) — = SO (15)

Since by the assumptions of the theorem, the second summand in (15) is non-
positive and by Lemma, '(t) < 0, we obtain

'(t) pa(t)
w' () < 29 ey — o)ty — L8
o0 O = S
The rest of the proof is similar to that of Theorem 2.1. O

Theorem 3.2. Suppose that the main assumptions (i)-(v) and (vit) are satisfied,
and assume that there exists a function p € C([to, 00), (0,00)) such that

t
lim sup / {H(s,l)p(s)q(s) - MQ%@,Z)] ds > 0
t—oo Ji 4pu
and
i ar(s)p(s)
lim Sup/ [H(t,s)p(s)q(s) — ———4—@%@,8)] ds>0

t—oo Ji 1
for some H € X, and for each | > ty, then Eq.(1) is oscillatory.
Corollary 3.1. Suppose that the main assumptions (i)-(v) and (vii) are sat-
isfied. Then every solution of Eq.(1) is oscillatory provided that there erists a

function p € C([tg, 0), (0,00)) such that for each | > to and for X > 1, the
following two inequalities hold:

lim sup t’\%/z [(s —1)*p(s)q(s) — Ev_r(s_)p(s_)(s )2

t—oo i
(oo o

" imsup b [ [0 9 poate) - D ¢ -2
(oo

Theorem 3.3. Suppose that the main assumptions (i)-(v) and (vii) are satis-
fied, and assume that there exists a function p € C([to, 00), (0,00)) such that
for any u € Cla, b] satisfying u'(t) € L?[a,b] and u(a) = u(b) = 0, we have

"2 or(s)p(s) (eey o LuaZ G
/a u”(8)q(s)p(s) — — <u (s) + =u(s) ) } ds >0,

27 p(s)
then Eq.(1) is oscillatory.
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Remark. We have required in this paper that the function p(t) is nonnegative
and ¢(t) is strictly positive. Although positive damping is commonly encoun-
tered in applications, it would be desirable to consider also the cases where the
damping term is non-positive and of variable sign. Careful examination of the
proof of Lemma reveals that nonnegativity of p(t) can be replaced with non-
positivity of this function provided that the assumption

k2(u,v) has the sign opposite to that of v for all v € R/{0} and u € R is
considered in place of condition (vi) for the function kz(u, v).

4. Examples

Example 1. Consider the nonlinear differential equation

. 4 12y’
(; I :gzrz - i ii)(t) /(t) ; i Eil%z) + exp (t +sint)z*(t) (@' (£))2 + x(t)(1 +
z*(t)) = 0,

where t > 0. f'(z) = 1+ 32? > 1. Let p(t) = 1, a = 2knm, b= 2kn +m, u(t) =

sint,
2knt+w . 2
1+sin“t
/ (sim2 t— —i—-——é— cos? t) dt
2k 2+ sin“t

2kn+4m ) ) 2km+w ) 1
= sin®t — cos tdt-l—/ cos“ t(———-)dt
/2k7r ( } 2km (2 + sm2t)

2kn4n 1
= / cos® t(———-)dt > 0.
2k 2+ sin“t

Hence, the equation is oscillatory by Theorem 3.3.

Example 2. Consider the nonlinear differential equation

NGRS R CAG)AY 02 /
((1 - smt)l +x2(t)$ (t)2 m (x’(t))2> + (1 +sin? )z (1) (' (¢))?
2@+ 220) _
1+22(t)

where ¢ > 0. Note that f'{z) is complicated, so Theorem 3.3 can not apply
to this equation, so we can apply Theorem 2.3 because f{x)/z > 1. Thus let

p(t) =1, a=2kn, b=2kr +n, u(t) =sint,

2kn4m
/ [sin®t — (1 — sint) cos® t]dt = 2/3 > 0.
2km

Hence, the equation is oscillatory by Theorem 2.3.

Remark. We stress that the oscillatory character of this two examples are not
deducible from previously known oscillation criteria.
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