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THE GLOBAL ATTRACTOR OF THE
2D G-NAVIER-STOKES EQUATIONS
ON SOME UNBOUNDED DOMAINS

HyukJIN KWEAN AND JAIOK ROH

ABSTRACT. In this paper, we study the two dimensional g-Navier-
Stokes equations on some unbounded domain Q C R2. We prove the
existence of the global attractor for the two dimensional g-Navier-
Stokes equations under suitable conditions. Also, we estimate the
dimension of the global attractor. For this purpose, we exploit
the concept of asymptotic compactness used by Rosa for the usual
Navier-Stokes equations.

1. Introduction

We study the existence of a global attractor of the g-Navier-Stokes
equations on some unbounded domain  C R? which has the following
form,

8
(1.1) —8—1;—VAu+(u-V)u+Vp = f in Qx(0,00),

(1.2) évo(gu)——— 0 in Qx (0,00),

where g = g(z1,z2) is a suitable real-valued smooth function. Here, v
and f are given and the velocity u and the pressure p are the unknowns.
When g = 1, the equations (1.1)—(1.2) become the usual two dimensional
Navier-Stokes equations. The motivation of g-Navier-Stokes equations
arose from the study of usual Navier-Stokes equations on 3-dimensional
thin domains. Among many results about these equations (for exam-
ple, see [11], [14], [15], [16] and [17]) on the thin domain, we focus on
Raugel and Sell’s work. Raugel and Sell considered the Navier-Stokes
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equations on a three dimensional thin domain Q. = Q x (0,¢€), for the
purely Periodic boundary conditions and the Periodic-Dirichlet bound-
ary conditions, that is, periodic conditions in the thin vertical direction
and homogeneous Dirichlet conditions on the lateral boundary condition
I, = 0Q x (0,¢€), where Q C R2.

As in [10], an essential tool in their proof is the vertical mean oper-
ator M which allows the decomposition of every function U on € =
Q X (0,¢€) into the sum of a function MU = v(x;,x2) which does not
depend on the vertical variable and a function (I — M)U = w(z1, x2, x3)
with vanishing vertical mean and thus to use more precise Sobolev and
Poincaré inequalities. Then, they showed that the reduced 3D Navier-
Stokes evolutionary equations by v incorporates the 2D navier-Stokes
equations on ).

Later, by using the same tool as Raugel and Sell with improved Ag-
mon inequalities, Temam and Ziane([24], [25]) generalized the results of
[16] and [17] to other boundary conditions and, in the case of the free
boundary conditions, to thin spherical domains. In [19], Roh applied
same method for the domain Q4 = 2 x (0, g), where €5 is a bounded
region in the plane and ¢ = g(y1,y2) is a smooth function defined on {22
with g(y1,y2) > 0 for (y1,y2) € Q2. Now, we consider the 3D Navier-
Stokes equations,

U JAUS(U-V)U+VE=F in 9,

ot
V- U=0 in Qg
with the boundary condition
(1.3) U-n=0 on 04U,

where

01y = {(y1,92,93) € Yy : y3 = g(y1,92)},
Qg = {(y1,92,y3) € Qy : y3 =0}
One note that the lateral boundary conditions corresponding to 02

were not used for the derivation of the g-Navier-Stokes equations.
Next, we define a vector field v = (v, va,v3) given by

vi(z1,22) = MU;
1

g(z1,22)
= ——— U;(x1, 2, dys, for i=1,23.
9(301,362)/0 i(®1,72,y3) dys
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Then, Roh{18] showed that u =(uy, uy) = (vy,va) satisfies
\va (gu) _ a(gul) + a(gu2)

=Vg-u+g(V-u)=0 in Qy,

8901 8:v2
where V = (8%1, 6%2).

This theorem means that good properties of the 2D g-Navier-Stokes
equations can lead to initiate the study of the Navier-Stokes equations
on thin three dimensional domain €}, because the reduced 3D Navier-
Stokes evolutionary equations by

1 g(xlsz)
——-/ U([El,l'g,l‘?,) d:L‘g,
g($1,$2) 0

can incorporate with the 2D g-Navier-Stokes equations. This is the basis
for our study of the 2D g-Navier-Stokes equations.

In [18], Roh derived the g-Navier-Stokes equations to study the 3D
Navier-Stokes equations on thin domain 4, = Q5 x (0,g), where €25 is
bounded domain and many good properties of the 2D g-Navier-Stokes
equations were proved in [18], [19].

But we note that the derivation of the g-Navier-Stokes equations can
be generalized to the unbounded domain(see [18]). So, in [5], Bae and
Roh proved the existence of the solutions on the whole space R2.

In this paper, for the restricted unbounded domain, we prove the
existence of the global attractor of the 2D g-Navier-Stokes equations
and estimate the dimension of the global attractor.

For the Navier-Stokes equations, the global attractor was first ob-
tained for bounded domains in the works of Ladyzhenskaya[12] and Foias
and Temam[9]. Then, the latter work showed the finite dimensionality
of the attractor in the sense of the Hausdorff dimension(see (6], [7] and
22]).

The existence of the global attractor for dissipative evolution equa-
tions has relied on some kind of compactness of the semigroup generated
by such equation together with the compact imbedding of the relevant
Sobolev spaces. This approach is suitable only for bounded domain
since the Sobolev imbedding are no longer compact otherwise. Nev-
ertheless, the existence of the global attractor for unbounded domain
was obtained by Abergel[l], Babin[3], Babin and Vishik[4] considering
weighted spaces. But in their work, the forcing term and in some cases
even the initial condition had to be restricted to the weighted spaces.

However, Rosa[20] proved that for suitable unbounded domains, the
semigroup generated by solutions of the Navier-Stokes equations has a
global attractor A when the external forcing term f even lies in V.

v(zy, 22, 23) =
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For his result, Rosa[20] exploited the energy equation to prove that the
semigroup becomes the asymptotic compactness which was already used
by Abergel([1], [2]) and by Ladyzhenskaya[13].

In this paper, we prove the existence of a global attractor of 2D g-
Navier-Stokes equation using the same argument. Also, we prove the
finite dimensionality of the global attractor.

2. Preliminaries

We consider the flow of fluid enclosed in a region Q C R? with rigid
boundary 9 and governed by the g-Navier-Stokes equations. We de-
note by u(x,t) € R? and p(z,t) € R, respectively, the velocity and the
pressure of initial-boundary value problem :

4

@*'VAU-{-('U,'V)U-i-Vp:f in Q,

ot

1

-V-(gu)=0 in Q,
(2.1) - (gu)

u=0 on 91,

| w(0)=u in £,

where v > 0 is the kinematic viscosity of the fluid, f = f(x,t) € R?is the
external body force (assumed to be time independent), and the function
g = g(z1,z2) is positive real-valued smooth function. We assume that
the function ¢ satisfies

0 <mo < g(x1,22) < My forall (z1,z2) € Q

for some constants mg and M.

The domain €2 can be an arbitrary unbounded open set in R? without
any regularity assumption on its boundary 0. But, we assume that
the Poincaré inequality holds on Q. More precisely, we assume only the
following : There exists A; > 0 such that

1
(2.2) /Q Fods < I /Q VolPgdz, Ve HLQ).

The mathematical frameworks of (2.1) is now following : first we let
L%(g) = (L%(2))? and H}(g) = (H3(Q))? endowed, respectively, with
the inner products

(u,v) :/u'vgdx, u,v € L%(g),
Q
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and

2
((u,v)) = /QZVuj Vj gdx, u=(u,us), v=/(v1,v2) € Hy(g),

=1

and norms | - | = (-,-)%/%, || - || = ((-,-))/% Note that thanks to (2.2)
the norm || - || is equivalent to the usual one in H} (). Let D(£2) be the
space of C* functions with compact support contained in 2 and let

V={ve(DQ)?:V-gv=0 inQ},

V = closure of V in Hi(g),

H = closure of V in L%(g),
with H and V endowed with the inner product and norm of , respectively,
L%(g) and H}(g). It follows from (2.2) that
(2.3) lu|? < /\%Hu||2, VuelV.

Now, we define a g-Laplacian operator as follows:

A= —%(V - (gVu)) - Au-— (% -v>u.

Using the g-Laplacian operator, we rewrite the first equation of (2.1) as
follows :

0
(2.4) —8—1;—yAgu+V<%‘V>u+(u-V)u+Vp:f.
Also, we define a g-orthogonal projection

P:1%g) — H

and g-Stokes operator

Au = —PG(V- (gVu))).

By applying the projection P into the equation (2.4), we then obtain
the following weak formulation of (2.1) : for f € V' and ug € H given,
find u satisfying

(2.5) we L®(0,T; H)n L*(0,T;V), VT >0,
such that
d
(2.6) E(u,v) + v((u, v)) + by (u, u, v)+ v(Ru,v)
= <fv> YweV, Vt>0,
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and

(2.7) u(0) = uo,
wherebg:VxVxV—>Risgivenby

(2.8) bg(u, v, w) Z /uZ wJ gdz,

i,=1
and Ru = P(%‘Z - V)u for all w € V, and < -,- > is the duality product

between V' and V when we identify H with its dual. Then, the weak
formulation (2.6) is equivalent to the functional equation

(2.9) v +vAu+Bu+vRu=f inV', fort>0,
where u' = du/dt, A:V — V' is the g-Stokes operator defined by
(2.10) < Au,v >= ((u,v)), Vu,veV,

and B(u) = B(u,u) = P(u- V)u is a bilinear operator B: V xV — V'
defined by

< B(u,v),w >=bg(u,v,w), VYu,v,weV.

The g-Stokes operator A is an isomorphism from V into V', while B and
R satisfy the following inequalities (see Sell and You[21] and Roh[19)]):

IVoloo
1/2

211) Bl < C |ulllull, IIRullvf< lull YueV.

We have the following result (see Bae and Roh[S], and Temam|23)).

PROPOSITION 2.1. Given f €V’ and ug € H, there exists a unique
u € L®(RT; H)N L*(0,T;V), ¥V T > 0, such that (2.6) and (2.7) hold.
Moreover, v’ € L2(0,T; V'),V T > 0 and u € C(R*; H).

Now, let u = u(t),t > 0, be a solution given by Proposition 2.1. Since
u € L?(0,T;V) and v’ € L?(0,T; V"), we obtain

1d, o
2.12 =
(2.12) 5 dt|u| =<u,u>
and we have from (2.9) that
1d, o
2dtlul =< f-vAu - B(u) — vRu,u >

=< f,u> —v||u||® - by(u, u,u) — u((%V) u,u).
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Since bg(u,v,v) =0,V u,v € V, we have
d
g

in the distribution sense on RT.
Moreover, using (2.3), we have

d |f|l Voo
—[ul® 4+ 2v|[ul® < Il + | |ul|* + 2v vl ||ul|?
dt 1/2
and hence
2 2 2 2 ”f”%/’
(2.14) |u\ + vAyolul® < iU\ + vyolful|* < ;

— dt
where v =1 — f)f;ﬁ‘;’g > 0 for sufficiently small |Vg|s....
041

Therefore, from (2.14), we obtain

2
(2.15) [u(®)]* < Jul?e™am0! ll/lf;'m, Vit>0,
and
1 [t Jug|? Hfll2
216) /0 lu(s)Pds < 25 + ST w0

Due to Proposition 2.1, we can define a continuous semigroup {S(¢) }+>0
in H by
Stug =u(t), V>0,
where u(t) is a solution of (2.6) with u(0) = ugp € H.... We see also that
the map S(t) : H — H, for t > 0, is Lipschitz continuous on bounded
subsets of H. Moreover, it follows form (2.15) that the set

e s={uetflzp=1 i)

is absorbing in H for the semigroup.

Then, we can also prove the following weak continuity of the semi-
group {S(t)}+>o0-

LEMMA 2.2. Let {up,}n be a sequence in H converging weakly in H
to an element ug € H. Then

(2.18) S(t)uo, — S(t)up weaklyin H, Vit>0,
and

(2.19)  S(Yuom — S(Jug weakly in L*(0,T;V), VT >0.
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PROOF. Since the proof of this lemma is almost the same as in
Rosa[20], we omit the proof. O
3. Existence of the global attractor
For the existence of the global attractor, we will prove the asymp-

totic compactness of the semigroup {S(t)}:>0. A semigroup is said to be
asymptotically compact in a given metric space if

(3.1) {S(t,)u,} is precompact,
whenever
(3.2) {un} is bounded and ¢, — oc.

To prove that {S(¢)}:>0 is asymptotically compact in H, we use the
energy equation (2.13).

First, we define a function [-,-]: V x V — R by
(3.3)
A
ol = (o) + (229 ) wo) 45 ((32-9) vu) -
for all u,v € V. Then [+, ] is bilinear and symmetric. Moreover, we have

from (2.3) that
\% A
o = ] = ol 4 ( (29 ) ) =

IVgloo 1 2
zw|u||2—u(———+— ™
A2 4

v
> 2jul?

whenever |Vg|s is sufficiently small so that IVi |1°/°2 < 1/4. Hence
moA;

(3.4) Sl < WP < Sl Vuev.
Thus [+, -] is an inner product on V with the norm [] = [, -]'/2 equivalent
to || - ].

Now, by adding and subtracting vA;|u|?/2 to (2.13), we obtain

d A
(3.5) Sl + T 2 =2 < fru >,
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for any solution u = u(t) = S(t)ug,uo € H. Then, by the variation of
constant formula,

[u(®)[? = Juole M2 4 2 / T MO0 < £ u(s) > —[u(s)P)ds,
0

which can be written
(3.6)

t

1S (t)ug|?* = ]u0|2e‘”1t/2+2/ e MmN (< £, 8(s)ug > —[S(s)uo])ds,
0

for all up € H, and t > 0.

We are now to prove the following :

THEOREM 3.1. Assume that the function g satisfies |Vg|eo < mo)\i/ 2 /4
Then the semigroup {S(t)}+>q is asymptotically compact in H.

PRrROOF. Let B C H be a bounded set and consider sequences {u,} C
B and {t,} such that t, > 0, £, — co. Then it suffices to show that the
set {S(tp)un} is precompact in H. Since the set B defined in (2.17) is
absorbing, there exists a time T(B) > 0 such that

S#B c B, Vt>T(B),
so that for ¢, large enough (¢, > T(B)),
(3.7) S(tn)uy, € B.

Thus {S(tn)u,} is weakly compact in H and hence there are subse-

quences, which we relabel as u,, and t,, and an element w € B such
that

(3.8) S{tp)un — w, weakly in H.
Similarly for each T > 0, we also have
(3.9) Sty —T)un € B

for t, > T+ T(B). Therefore, {S(t, — T)uy} is also weakly precompact
in H and hence there are further subsequences, which we relabel as u,
and t,,, and an element wr € B such that

(3.10) S(tn — T)u, — wp, weakly in H, VT eN.
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Note that by the weak continuity of S(¢), proved in Lemma 2.2,
w = limy, S(tp)u, = limyg, S(T)S(tn — T)un

n—r00 n—00
= 8(T) limpy,, S(tn — T)uy,
n—oo

= S(Twr,
where limy , denotes the limit taken in the weak topology of H. Thus
(3.11) w=8T)wr, VYT €N

From (3.8), we have

(3.12) |lw| < liminof |S(¢n)unl,

n—o

and we shall now prove that

limsup |S(tn)un| < jwl.
n—o0

For T € N and ¢, > T we have by (3.6)
1S (tn)unl® = |S(T)S(tn — T)un|*
= |S(tn — T)un|?eM7T/2

T
(3.13) 49 / eMT=9)/2 < £ 8()S(tn — Tup >
0

T
o / =M T=/2(S(5)S (b, — T)un]2ds.
0

From (3.9), we obtain

n—o

314)  msup(eNTRS( ~ Thual?) < poe N

Also, by the weak continuity of (2.19) we deduce from (3.10) that
(3.15) S()S(tn — T)un, — S()wy weakly in L*(0,T;V).
Then since

s — e MT=9/2¢ ¢ [2(0.T; VI),

we obtain
T a(T-s)
lim e 2 < [f,8(8)S(tn — T)un > ds

n—oo 0

(3.16) .
_vA(T—s)
=/ e T < f,S(s)wr > ds.
0
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Moreover, since [-] is a norm on V equivalent || - ||, we see that

T 1/2
</ e—l//\l(T—s)/Q[_]Qd8>
0

is a norm in L%(0,T; V) equivalent to the usual norm. Therefore, from

(3.15) we have
T
vX(T—s
/ e s )[ (S)WT] S

(3.17)
l/)\l T—
<lim 1nf/ ( [S(s)S(t, — T)Un]zds-
MT—00
Hence
T
lim sup (—2/ e"”\l(T*s)/z[S(s)S(tn — T)un]QdS)
n—oQ Q
T
(3.18) = —2liminf [ e *MT=9)/2[(S(5)S(t, — T)un|?ds

n—0o0 0

T
< — 2/ e“"xl(T_s)ﬂ[S(s)wT]st.
0
We now pass to the limsup as n goes to infinity in (3.13), taking
(3.14), (3.16), and (3.18) into account to obtain

(3.19)
limsup [S(tn)un|® < fpo[®e

T
+2/ (T s/2{< £, S(s)wr > —[S(s)wT]z}ds.
0

On the other hand, we obtain from (3.6) applied to w = S(T)wr that

wl* = |S(T)we?

_ e_"’\lT/QJwTP

—vA1T/2

(3.20) .
R R O e
0
Hence, from (3.19)—(3.20), we obtain

hmsup]S( n)u,n|2 < Iw‘Q ( % . le|2)e—uk1T/2
(3.21) nsoo
< Jwf® + pje M2, YT eN.
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Letting T' — oo in (3.21), we obtain
(3.22) limsup [S(tn)unl? < |w|®.
n—o0

Since H is a Hilbert space, (3.12) and (3.22) imply that
(3.23) S(tn)un, — w strongly in H. O

Using the result of Theorem 3.1, we prove the existence of the global
attractor.

THEOREM 3.2. Let Q be an unbounded open set satisfying (2.2).

Assume v > 0, f € V', and |Vg|oo < mo)\i/z/él. Then the dynamical
system {S(t) }s>0 associated to the evolution equation (2.6) possesses a
global attractor in H, i.e., a compact invariant set A C H which attracts
all bounded sets in H. Moreover, A is connected in H and is maximal
for the inclusion among all functional invariant sets bounded in H.

PROOF. For the proof of this result, we refer Sell and You[21], and
Temam|[22]. O

4. The dimension of the attractor

We have shown the existence of the global attractor 4 for that g-
Navier-Stokes equations on §2 C R2. In this section, we want to estimate
the dimension of the global attractor A of 2D g-Navier-Stokes equations.
We use the general theory developed by Constantin et al.[8], and follow
the presentation given by Temam[22].

We rewrite the equation (2.9) in the abstract form
(4.1) u = F(u),

where F(u) = —vAu— Bu—vRu+ f. Then we see that the first variation
equation

(4.2) » U =F (u)U

is equivalent to

(4.3) % + VAU + B(u,U) + B(U,u) + vRU = 0.
Equation (4.3) is supplemented as usual by the initial condition
(4.4) U()=¢, ¢€H.

We can prove the following properties rigorously (see Temam[22]):



g-Navier-Stokes equations on some unbounded domains 743

If v is the solution of (4.1) then the initial- and boundary-value
problem (4.3)—(4.4) possesses a unique solution

U e L*0,T;V)NnC(0,T); H), YT >0.

For every t > 0, the function up — S(t)ug is Fréchet differentiable in
H at ug with differential L(t,up) : £ € H — U(t) € H, where U is the
solution of (4.3)—(4.4).

Before proceeding with the estimate of the Lyapunov exponents, we
compute here a bound for the energy dissipation flux € defined by

1 17
(4.5) € = v\ limsup — / |lu(s)||?ds,
t—oo b 0

where u is the velocity. Also we estimate this quantity in terms of the
data, and more specifically in terms of the generalized Grashof number

G
_ 1Ay
V2A1/2’

where A1 is given in (2.3).
By taking an inner product (4.1) with u, we obtain

gl vl < 11l + (~2(9g - 90,0)

Wy 2y T 2

which implies, with (2.3)
\1f H?V, 2v

v

d
Sl + vijulf? < I Volelll

2|V gloo HfH Iuo\2
,,(1_ | 1‘/2> /|| (5)]]%ds < —X

Therefore, we have

A 2|V gloo \ 2|Vgloo) "
(4.6) 1(1— ‘All/2> ;|f|¢2v,:y3A§G2<1— 1 )

v moAq m())\

and then

whenever v = 1 — 2|V91|7§ > 0.
Mo
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More generally, we can consider, instead of a specific trajectory S(t)ug
all the trajectories for ug in a bounded functional-invariant set X C H.
In this case ¢ is defined as

¢
€ = vA1 limsup Sup %/ |lu(s)||2ds
0

t—oo wpeX

and (4.6) remains valid.

We consider, for m € N,

t
= JEL A~ A bmlpm €D /0 Tr F/ (S(r)up) © @u(r)dr

where S(T)up = u(7) is the solution of (4.1); Uy,...,Uy are m solu-
tions of (4.3)—(4.4) corresponding to the initial data &1 ... ,&m; Qm(7T) =
Qm(1,u0; &1, - . ., &m) is the orthogonal projector in H onto the space the
spanned by Uy(7),...,Un(7).

At a given time 7, let ©;(7), j = 1,...,m, be an orthonormal basis
of Qu(T)H = Span[Ui(7),...,Un(7)] : ¢;(1) € V for j = 1,...,m since
Ui(1),...,Un(7r) € V (a.e. 7 € R}), and we have

Tt F'(S(r)uo) o Qu(r) = > (Tt F' (u(7)) 0 Qum(r)ep;(7), (7))

1

.
il

(4.7)

(F'(u(r))p;(7), 05(7)).

I

1

1

J

Omitting temporarily the dependence on 7, we write
(F (w)ej, ¢5)

(4.8) = —v(Aypj, ;) — (Blyj, u), ;) — (g(Vg-vgaj),(pj)

14
= —vllp;l|* — bg(ej, u, ;) — <§(V9 -V)ej, soj) ,

m

m
Y (F e o) ==v> llgll?

j=1 j=1
m

_Zbg(‘Pj,U,‘PJ Z( Vg- V(PJ’QDJ)
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Using the explicit expression of by, we obtain

'Zb Li, U, Pj ‘—1/22%1 )Diug(x)pjk(z)g(x)dz

j=14,k=1

< /Q grad u(@)|p(x)g(x)dz,

where
2 1/2
|grad u(z)| = | Diug()* b
gt = {3 1Pt}
m 2
p(z) =D > (pi(x))%
j=1 i=1
Therefore,
‘Zb (@5, U, sog /\gradu Np(z)g(z)dz
(4.9) g=1

< (with the Schwarz inequality)
< ulllpl-

Also, we obtain

(v = v|Vg|
Z(;Vg-v%,sog) <3 e el
J=1 Jj=

(4.10) < (with the property 2.2)

v|Vgloo
<Z | 1‘/2|| oill

We recall that the dependence on 7 has been omitted and in fact
u = u(x,7),p = p(z,7), etc... . From (4.8)-(4.10), we have established
the following inequality

(411) T F (u(r)) 0 Qu(r) < —u<1 - fi‘f;) >l + ol

011

Since the ;s are orthonormal in H, hence in Lz(g), and belong to
V C H(g), we have the Lieb-Thirring inequality (see Theorem A.3.1 in
Temam|22]) there exists a dimensionless constant ¢ depending only on
the shape of 2 such that
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(4.12) p0)P = [ P nigadde < e llosl®
. Q e
Hence
Tr F' (u(T)) © Qm(T)
m 1/2
<-(1- 'Vg'f;;)2||%||2+uu||( Slieil?)
(4.13) i=

< (with the Schwarz inequality)
v 2|Vy|
<-2(1-2 17;) >l + gl

Now (2.2) allows us to majorize Tr F (u) 0 Qp, in (4.13) as follows

’ I/)\l 2|Vg|oo (& 2
T F (u(r)) 0 Qu(r) < — (1———— m -+ lul
2 mo)\iﬂ v

and
/ Tr F (u(r)) o Qm(r)dr < —sohim + / u(r)|Pdr,

where v =1 — gll"; > 0.
moA]

Now we define

n(®) = Sy Sup (3 [ o e o @niriar),

ug€A &;eH
16;1<1
j=1,..m
am() < —20dum + = Sup / ()| Pdr,
2 uoEA
@m = limsup g, (t) < —k1m + Ka,
t—oo
where
14 C €
= Zo -fc_€
270 1, K2 9 1/2)\1 9

1 t
€ = vA1 limsup Sup n /0 ||u(r)||?dr.

t—oo wypg€A
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Then we obtain the following bound on the Lyapunov exponents
Hj, JEN,
pr+tpp < g < —kimt kg, VjEN
Using Lemma VI.2.2 in Temam[22], we see that if m is defined by
(4.14) m—1<%2:—£g—§nu
K1 v )\%'yo
then py + -+ 4+, < 0 and
(a4 ).
PIE
We have now proved the following

<1, Vj=1,..,m—1

THEOREM 4.1. We consider the dynamical system associated with the
two dimensional g-Navier-Stokes equations when |Vg| < mo)\}/ 2 /4. We
define m

2 2
(4.15) m—1< 22 «

k1 3Ny T i

where c is a dimensionless constant depending only on the shape of €.
Then the corresponding global attractor A has a Hausdorff dimension
less than or equal to m and a fractal dimension less than or equal to
2m.

REMARK 4.2. Thanks to (4.6) and (4.15),
2K9 2ce < C

AL QR .24

k1 M T g
for some constant C' > 0 and hence we can replace, in the statement of
Theorem 4.1, m by another larger number m; given by

C
m1—1<——2G2§m1.
70
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