• Title/Summary/Keyword: Epigenetic change

Search Result 37, Processing Time 0.026 seconds

A lifelong exposure to a Western-style diet, but not aging, alters global DNA methylation in mouse colon

  • Choi, Sang-Woon;Tammen, Stephanie A;Liu, Zhenhua;Friso, Simonetta
    • Nutrition Research and Practice
    • /
    • v.9 no.4
    • /
    • pp.358-363
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: Previous studies have indicated that when compared to young mice, old mice have lower global DNA methylation and higher p16 promoter methylation in colonic mucosa, which is a common finding in colon cancer. It is also known that a Western-style diet (WSD) high in fat and calories, and low in calcium, vitamin D, fiber, methionine and choline (based on the AIN 76A diet) is tumorigenic in colons of mice. Because DNA methylation is modifiable by diet, we investigate whether a WSD disrupts DNA methylation patterns, creating a tumorigenic environment. SUBJECTVIES/METHODS: We investigated the effects of a WSD and aging on global and p16 promoter DNA methylation in the colon. Two month old male C57BL/6 mice were fed either a WSD or a control diet (AIN76A) for 6, 12 or 17 months. Global DNA methylation, p16 promoter methylation and p16 expression were determined by LC/MS, methyl-specific PCR and real time RT-PCR, respectively. RESULTS: The WSD group demonstrated significantly decreased global DNA methylation compared with the control at 17 months (4.05 vs 4.31%, P = 0.019). While both diets did not change global DNA methylation over time, mice fed the WSD had lower global methylation relative to controls when comparing all animals (4.13 vs 4.30%, P = 0.0005). There was an increase in p16 promoter methylation from 6 to 17 months in both diet groups (P < 0.05) but no differences were observed between diet groups. Expression of p16 increased with age in both control and WSD groups. CONCLUSIONS: In this model a WSD reduces global DNA methylation, whereas aging itself has no affect. Although the epigenetic effect of aging was not strong enough to alter global DNA methylation, changes in promoter-specific methylation and gene expression occurred with aging regardless of diet, demonstrating the complexity of epigenetic patterns.

RNA Binding Protein as an Emerging Therapeutic Target for Cancer Prevention and Treatment

  • Hong, Suntaek
    • Journal of Cancer Prevention
    • /
    • v.22 no.4
    • /
    • pp.203-210
    • /
    • 2017
  • After transcription, RNAs are always associated with RNA binding proteins (RBPs) to perform biological activities. RBPs can interact with target RNAs in sequence- and structure-dependent manner through their unique RNA binding domains. In development and progression of carcinogenesis, RBPs are aberrantly dysregulated in many human cancers with various mechanisms, such as genetic alteration, epigenetic change, noncoding RNA-mediated regulation, and post-translational modifications. Upon deregulation in cancers, RBPs influence every step in the development and progression of cancer, including sustained cell proliferation, evasion of apoptosis, avoiding immune surveillance, inducing angiogenesis, and activating metastasis. To develop therapeutic strategies targeting RBPs, RNA interference-based oligonucleotides or small molecule inhibitors have been screened based on reduced RBP-RNA interaction and changed level of target RNAs. Identification of binding RNAs with high-throughput techniques and integral analysis of multiple datasets will help us develop new therapeutic drugs or prognostic biomarkers for human cancers.

What is Epigenetics? -Focusing on Basic Concepts and Mechanisms- (최근 보건의료분야에서 활발하게 연구되고 있는 "Epigenetics"란 무엇인가? -기본개념 및 기전을 중심으로-)

  • Lee, Sun-Dong;Park, Sung-Kyun;Ko, Seong-Gyu;Shin, Heon-Tae;Kim, Myung-Dong
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.14 no.2
    • /
    • pp.1-12
    • /
    • 2010
  • The individual differences in disease development and susceptibility have been researched primarily on the subject of genes, environment or the interaction between genes and the environment respectively. However, there have been limitations in explaining complex diseases, and the differences in health and diseases in monozygotic and dizygotic twins. Fortunately, thanks to active research on the relationship between genes and the environment, and epigenetics, there has been much progress in the understanding of body's reactions and changes. Epigenetics is referred to as a study of gene expression through the interactions of DNA methylation, chromatin's histone and the change of structure in tail, RNA editing without any change in DNA sequence. In this paper, we introduce the basic concepts and mechanisms of epigenetics. The result of the epigenetics is heritable ; can regulate gene expressions ; is reversible ; and has many variable forms depending on cell types. The influences of epigenetics occur throughout life, but it is mainly determined in utero during early pregnancies. Diseases occur or the risk rises if these influences continue after birth until adult life when problems occur in excess/lack of nutrition, environmental plasticity, or already inputted data. Therefore, there is a need for change and innovation, especially in interest and investment in health education for young women near pregnancies and correct treatment of epigenetic-related diseases.

A review of epigenetic nutrients on chronic inflammation associated with sarcopenic obesity in the elderly (노인의 저근육형 비만에 따른 만성염증 억제를 위한 후생유전학적 영양에 관한 고찰)

  • No, Jae Kyung
    • Korean Journal of Human Ecology
    • /
    • v.22 no.1
    • /
    • pp.181-188
    • /
    • 2013
  • 노인에게서 두드러지게 나타나고 있는 저근육형 비만은 근육감소를 동반한 체지방의 증가로 신체상의 뚜렷한 체성분의 변화를 야기 시킨다. 이때 골감소증을 동반하여 신체기능의 감소 및 골절장애 그리고 대사성 관련 질환의 위험도가 올라가는 것으로 보고되고 있다. 노화로 인한 체성분의 변화는 단순한 저근육형일 경우와 비만일 때 보다 급격히 증가된 복부내장 지방조직에서 분비되는 염증성 사이토카인, C-반응성 단백질(CRP), 인터루킨(IL)-6, IL-8 및 종양 괴사 인자(TNF-${\alpha}$)들이 단백질 대사를 저해하여 근육량의 감소를 더욱 촉진시키며, 염증관련 대사질환의 유병률에 중요한 요인이다. 본 연구에서는 DNA 메틸화가 당뇨병, 심혈관질환, 암과 같은 만성염증성 질환에 관계하고 있다는 최근 연구 결과를 기초로 하여 항염증 영양소와 생리활성을 갖는 식품인자들의 충분한 섭취가 염증조절에 중요하게 기여할 것으로 생각되며, 또한 염증성 질환의 주요 표식자인 DNA 메틸화와 히스톤 변형을 유발하는 효소의 활성 또는 비 암호화된 RNA의 발현을 조절함으로써 근육량 증가와 체지방 감소에 중요한 역할을 하는 것을 살펴보았다. 따라서 최근 새롭게 인식되는 후생유전학적 연구의 중심에 있는 항염증 영양소의 효과와 체성분 변화와의 긍정적 관계를 중심으로 저근육형 비만의 예방 및 인구고령화에 건강한 노화를 위한 효과적인 방법을 제시하였다.

Long Non-coding RNAs and Drug Resistance

  • Pan, Jing-Jing;Xie, Xiao-Juan;Li, Xu;Chen, Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.18
    • /
    • pp.8067-8073
    • /
    • 2016
  • Background: Long non-coding RNAs (lncRNAs) are emerging as key players in gene expression that govern cell developmental processes, and thus contributing to diseases, especially cancers. Many studies have suggested that aberrant expression of lncRNAs is responsible for drug resistance, a substantial obstacle for cancer therapy. Drug resistance not only results from individual variations in patients, but also from genetic and epigenetic differences in tumors. It is reported that drug resistance is tightly modulated by lncRNAs which change the stability and translation of mRNAs encoding factors involved in cell survival, proliferation, and drug metabolism. In this review, we summarize recent advances in research on lncRNAs associated with drug resistance and underlying molecular or cellular mechanisms, which may contribute helpful approaches for the development of new therapeutic strategies to overcome treatment failure.

Methylation Changes of Lysine 9 of Histone H3 during Preimplantation Mouse Development

  • Yeo, Seungeun;Lee, Kyung-Kwang;Han, Yong-Mahn;Kang, Yong-Kook
    • Molecules and Cells
    • /
    • v.20 no.3
    • /
    • pp.423-428
    • /
    • 2005
  • Immediately after fertilization, a chromatin remodeling process in the oocyte cytoplasm extracts protamine molecules from the sperm-derived DNA and loads histones onto it. We examined how the histone H3-lysine 9 methylation system is established on the remodeled sperm chromatin in mice. We found that the paternal pronucleus was not stained for dimethylated H3-K9 (H3-$m_2K9$) during pronucleus development, while the maternal genome stained intensively. Such H3-$m_2K9$ asymmetry between the parental pronuclei was independent of $HP1{\beta}$ localization and, much like DNA methylation, was preserved to the two-cell stage when the nucleus appeared to be compartmentalized for H3-$m_2K9$. A conspicuous increase in H3-$m_2K9$ level was observed at the four-cell stage, and then the level was maintained without a visible change up to the blastocyst stage. The behavior of H3-$m_2K9$ was very similar, but not identical, to that of 5-methylcytosine during preimplantation development, suggesting that there is some connection between methylation of histone and of DNA in early mouse development.

Brain-Derived Neurotrophic Factor and Brain Plasticity: Non-Pharmacological Intervention (뇌유래신경영양인자와 뇌 신경가소성: 비약물적 개입)

  • Nak-Young Kim;Hyun Kook Lim
    • Korean Journal of Biological Psychiatry
    • /
    • v.30 no.1
    • /
    • pp.1-6
    • /
    • 2023
  • Many psychiatric disorders are associated with brain functional dysfunctions and neuronal degeneration. According to the research so far, enhanced brain plasticity reduces neurodegeneration and recovers neuronal damage. Brain-derived neurotrophic factor (BDNF) is one of the most extensively studied neurotrophins in the mammalian brain that plays major roles in neuronal survival, development, growth, and maintenance of neurons in brain circuits related to emotion and cognitive function. Also, BDNF plays an important role in brain plasticity, influencing dendritic spines in the hippocampus neurogenesis. Changes in neurogenesis and dendritic density can improve psychiatric symptoms and cognitive functions. BDNF has potent effects on brain plasticity through biochemical mechanisms, cellular signal pathways, and epigenetic changes. There are pharmacological and non-pharmacological interventions to increase the expression of BDNF and enhance brain plasticity. Non-pharmacological interventions such as physical exercise, nutritional change, environmental enrichment, and neuromodulation have biological mechanisms that increase the expression of BDNF and brain plasticity. Non-pharmacological interventions are cost-effective and safe ways to improve psychiatric symptoms.

DNA Methylation Change of Oct-4 Gene Promoter Region during Bovine Preimplantation Early Embryos (소 착상 전 초기수정란에서 Oct-4 유전자 Promoter 영역의 DNA 메틸화 변화)

  • Ko, Yeoung-Gyu;Kim, Jong-Mu;Kim, Dong-Hoon;Cha, Byung-Hyun;Kim, Seong-Soo;Yang, Byoung-Chul;Im, Gi-Sun;Kim, Myong-Jik;Min, Kwan-Sik;Seong, Hwan-Hoo
    • Reproductive and Developmental Biology
    • /
    • v.32 no.1
    • /
    • pp.33-38
    • /
    • 2008
  • DNA methylation is involved in tissue-specific gene control and essential for normal embryo development Octamer-binding transcription factor 4 (Oct-4) is one of the most important transcription factors for early differentiation. This study was performed whether the bovine Oct-4 is tissue specific or developmental dependent epigenetic mark, we investigated transcripts and the methylation status of CpGs of 5'-promoter region of Oct-4 in bovine preimplantation embryos. Oct-4 transcripts were highly detected in morula and blastocyst, while they were present low levels in sperm and 2- to 8-cell stage embryos. These results suggest that de novo expression of Oct-4 initiates at morula stage of embryogenesis. Here we determined that there is a tissue-dependent differentially methylated region (T-DMR) in the 5'-promoter region of Oct-4. The methylation status of the Oct-4 T-DMR was distinctively different in the oocyte from that in the sperm and adult somatic tissues and changed from zygote to blastocyst stage, suggesting that active methylation and demethylation occur during preimplantation development. Based on these results, the 5'-promoter region of Oct-4 gene is target for DNA methylation and the methylation status changes variously during embryonic development in bovine.

Variation in Development and DNA Methylation of Spodoptera exigua Fed with Different Diets (먹이에 따른 파밤나방 발육과 DNA 메틸화 변이)

  • Kim, Taehyung;Kumar, Sunil;Kim, Yonggyun
    • Korean journal of applied entomology
    • /
    • v.54 no.4
    • /
    • pp.359-367
    • /
    • 2015
  • Physiological plasticity of insects can be closely related with their epigenetic change. This hypothesis was tested using a polyphagous lepidopteran insect, Spodoptera exigua, by assessing the effects of different diets on development and DNA methylation. Three different diets (Welsh onion (WO), Chinese cabbage (CC), artificial diet (AD)) were assessed by feeding a cohort of larvae from neonate to last instar. There were significant differences in larval developmental rate, pupal weight and adult emergence according to diet treatments. AD-fed larvae exhibited the fastest developmental rate along with the highest pupal weight and adult emergence. Among natural hosts, WO was more favorable for development of S. exigua than CC. Total hemolymph proteins and sugars in the last instar larvae were varied among different diets. Gene expression of an insulin-like peptide (SeILP1) presumably associated with development was also varied among diets. Cytosine methylation of genomic DNA was assessed using a monoclonal antibody. Genomic DNA of S. exigua larvae was methylated. DNA methylation was apparently varied among different diet-fed larvae. The facts that a cohort of S. exigua was differentiated in developmental rate and cytosine methylation by different diets suggest that epigenetic factor(s) may play a crucial role in the physiological plasticity.

Adverse Effect of Nonylphenol on the Reproductive System in F2 Male Mice : A Qualitative Change?

  • Kim, Yong-Bin;Cheon, Yong-Pil;Choi, Donchan;Lee, Sung-Ho
    • Development and Reproduction
    • /
    • v.23 no.3
    • /
    • pp.255-262
    • /
    • 2019
  • Previously, we reported negative effects of low-dose nonylphenol (NP) exposure on the reproductive organs of F1 male mice. In the present study was further investigated the endocrine disrupting effect of NP exposure to F2 generation male mice. Mice were divided into 2 groups; (1) CON, control animals and (2) NP-50 ($50{\mu}g/L$), animals were treated with NP via drinking water. NP exposures were continuously conducted from parental pre-mating period until the postnatal day (PND) 55 of F2 offsprings. Mice were sacrificed on PND 55 and the reproductive tissue weights were measured. The initial (at PND 21) and terminal (PND 55) body weights of the NP-50 group animals were not significantly different from those of control group animals. NP exposure fail to induce a significant weight change of the testes, seminal vesicle and prostate except absolute epididymal weight (p<0.05). However, pathohistological studies revealed that NP-treated F2 animals showed evident decrease in seminiferous tubule diameters, reduced luminal area and number of germ cells. Also, sloughing morphologies in the tubules were notable. In the caudal epididymis, fewer mature sperms and swollen epithelial cells were found in the NP-treated group. The present study demonstrated that the subchronic low-dose NP exposure induced pathohistological abnormalities in testis and epididymis of F2 mice, and we assumed that these 'qualitative' changes in reproductive tissues could be derived from the epigenetic modifications such as DNA methylation, histone modification, altered DNA accessibility and chromatin structure. Further studies are needed to achieve a better understanding on the multi- or trans-generational effects of NP on the reproductive health and a human application.