Browse > Article
http://dx.doi.org/10.5656/KSAE.2015.10.0.048

Variation in Development and DNA Methylation of Spodoptera exigua Fed with Different Diets  

Kim, Taehyung (Department of Plant Medicals, College of Natural Sciences, Andong National University)
Kumar, Sunil (Department of Bioresource Sciences, Andong National University)
Kim, Yonggyun (Department of Bioresource Sciences, Andong National University)
Publication Information
Korean journal of applied entomology / v.54, no.4, 2015 , pp. 359-367 More about this Journal
Abstract
Physiological plasticity of insects can be closely related with their epigenetic change. This hypothesis was tested using a polyphagous lepidopteran insect, Spodoptera exigua, by assessing the effects of different diets on development and DNA methylation. Three different diets (Welsh onion (WO), Chinese cabbage (CC), artificial diet (AD)) were assessed by feeding a cohort of larvae from neonate to last instar. There were significant differences in larval developmental rate, pupal weight and adult emergence according to diet treatments. AD-fed larvae exhibited the fastest developmental rate along with the highest pupal weight and adult emergence. Among natural hosts, WO was more favorable for development of S. exigua than CC. Total hemolymph proteins and sugars in the last instar larvae were varied among different diets. Gene expression of an insulin-like peptide (SeILP1) presumably associated with development was also varied among diets. Cytosine methylation of genomic DNA was assessed using a monoclonal antibody. Genomic DNA of S. exigua larvae was methylated. DNA methylation was apparently varied among different diet-fed larvae. The facts that a cohort of S. exigua was differentiated in developmental rate and cytosine methylation by different diets suggest that epigenetic factor(s) may play a crucial role in the physiological plasticity.
Keywords
Spodoptera exigua; Diet; DNA methylation; Development;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Alborn, H.T., Turlings, T.C.J., Jones, T.H., Stenhagen, G., Loughrin, J.H., Tumlinson, J.H., 1997. An elicitor of plant volatiles from beet armyworm oral secretion. Science 276, 945-949.   DOI
2 Awmack, C.S., Leather, S.R., 2002. Host plant quality and fecundity in herbivorous insects. Annu. Rev. Entomol. 47, 817-844.   DOI
3 Bird, A., 2002. DNA methylation patterns and epigenetic memory. Genes Dev. 16, 6-21.   DOI
4 Bones, A.M., Rossiter, J.T., 1996. The myrosinase-glucosinolate system, its organisation and biochemistry. Physiol. Plant. 97, 194-208.   DOI
5 Borsatti, F., Mandrioli, M., 2004. The structure of insect DNA methyltransferase 2 (DNMT2) DNA binding domain is responsible for the non-CpG methylation in insect genomes. Caryology 57, 305-311.   DOI
6 Bradford, M.M., 1972. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye finding. Anal. Biochem. 72, 248-254.
7 Brewer, M.J., Trumble, J.T., 1991. Inheritance and fitness consequences of resistance to fenvalerate in Spodoptera exigua (Lepidoptera: Noctuidae). J. Econ. Entomol. 84, 1638-1644.   DOI
8 Feng, H.Q., Wu, K.M., Cheng, D.F., Guo, Y.Y., 2003. Radar observation of the autumn migration of the beet armyworm Spodoptera exigua (Lepidoptera: Noctuidae) and other moths in northern China. Bull. Entomol. Res. 93, 115-124.
9 Frelichowski, J.E., Jr., Juvik, J.A., 2001. Sesquiterpene carboxylic acids from a wild tomato species affect larval feeding behavior and survival of Helicoverpa zea and Spodoptera exigua (Lepidoptera: Noctuidae). J. Econ. Entomol. 94, 1249-1259.   DOI
10 Glastad, K.M., Hunt, B.G., Yi, S.V., Goodisman, M.A.D., 2011. DNA methylation in insects: on the brink of the epigenomic era. Insect Mol. Biol. 20, 553-565.   DOI
11 Goh, H.G., Choi, J.S., Eom, K.B., Choi, K.M., Kim, J.W., 1993. Seasonal fluctuation of beet armyworm, Spodoptera exigua (Hübner), adult and larva. Kor. J. Appl. Entomol. 32, 389-394.
12 Goh, H.G., Lee, S.G., Lee, B.P., Choi, K.M., Kim, H., 1990. Simple mass-rearing of beet armyworm, Spodoptera exigua. Kor. J. Appl. Entomol. 29, 180-183.
13 Goh, H.G., Park, J.D., Choi, Y.M., Choi, K.M., Park, I.S., 1991. The host plants of beet armyworm, Spodoptera exigua (Hübner), (Lepidoptera: Noctuidae) and its occurrence. Kor. J. Appl. Entomol. 30, 111-116.
14 Greenberg, S.M., Sappington, T.W., Legaspi, B.C. Jr., Liu, T.X., Setamou, M., 2001. Feeding and life history of Spodoptera exigua (Lepidoptera: Noctuidae) on different host plants. Am. Entomol. Soc. Am. 94, 566-575.   DOI
15 Greenberg, S.M., Sappington, T.W., Setamou, M., Liu, T.X., 2002. Beet armyworm (Lepidoptera: Noctuidae) host plant preferences for oviposition. Environ. Entomol. 31, 142-148.   DOI
16 Han, S., Lee, S., Kim, Y., 1999. Pathogenicity and multiplication of entomopathogenic nematode, Steinernema carpocapsae Weiser, on beet armyworm, Spodoptera exigua (Hübner) and tobacco cutworm, Spodoptera litura (Fabricius). Kor. J. Appl. Entomol. 38, 255-260.
17 Kim, Y., Lee, J., Kang, S., Han, S., 1998. Age variation in insecticide susceptibility and biochemical changes of beet armyworm, Spodoptera exigua (Hubner). J. Asia Pac. Entomol. 1, 109-113.   DOI
18 Jiang, X.F., Luo, L.Z., Hu, Y., 1999. Influence of larval diets on development, fecundity and flight capacity of the beet armyworm, Spodoptera exigua. Acta Entomol. Sin. 42, 270-276.
19 Kim, Y., Hong, Y., 2015. Regulation of hemolymph trehalose level by an insulin-like peptide through diel feeding rhythm of the beet armyworm, Spodoptera exigua. Peptides 68, 91-98.   DOI
20 Kim, Y., Kim, N., 1997. Cold hardiness in Spodoptera exigua (Lepidoptera: Noctuidae). environ. Entomol. 26, 1117-1123.   DOI
21 Kucharski, R., Maleszka, J., Foret, S., Maleszka, R., 2008. Nutritional control of reproductive status in honeybees via DNA methylation. Science 319, 1827-1830.   DOI
22 Lu, Z.Q., Xu, Y.H., 1998. The consideration of the incessant outbreak of the cotton bollworm, Helicoverpa armigera. Entomol. Knowl. 35, 132-136.
23 Mascarenhas, V.J., Graves, J.B., Leonard, B.R., Burris, E., 1998. Susceptibility of field populations of beet armyworm (Lepidoptera: Noctuidae) to commercial and experimental insecticides. J. Econ. Entomol. 91, 827-833.   DOI
24 Moar, W.J., Pusztai-Carey, M., Van Faassen, H., Bosch, D., Frutos, R., Rang, C., Luo, K., Adang, M.J., 1995. Development of Bacillus thuringiensis CryIC Resistance by Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae). Appl. Environ. Microbiol. 61, 2086-2092.
25 Park, J.D., Goh, H.G., 1995. Control of beet armyworm, Spodoptera exigua (Hubner) (Lepidoptera: Noctuidae), using synthetic sex pheromone. I. Control by mass trapping in Allium fistulosum field. Kor. J. Appl. Entomol. 34, 45-49.
26 Saeed, S., Sayyed A.H., Ahmad, I., 2010. Effect of host plants on life-history traits of Spodoptera exigua (Lepidoptera: Noctuidae). J. Pest Sci. 83, 165-172.   DOI
27 Painter, R.H., 1951. Insect resistance in crop plants. Macmillan, New York.
28 Rask, L., Andréasson, E., Ekbom, B., Eriksson, S., Pontoppidan, B., Meijer, J., 2000. Myrosinase: gene family evolution and herbivore defense in Brassicaceae. Plant Mol. Biol. 42, 93-113.   DOI
29 Ratzka, A., Vogel, H., Kliebenstein, D., Mitchell-Olds, T., Kroymann, J., 2002. Disarming the mustard oil bomb. Proc. Natl. Acad. Sci. USA 99, 11223-11228.   DOI
30 SAS Institute, Inc., 1989. SAS/STAT User's Guide, Release 6.03, Ed. Cary, NC, USA.
31 Seo, S., Kim, Y., 2011. Development of "Bt-Plus" biopesticide using entomopathogenic bacterial (Xenorhabdus nematophila, Photorhabdus temperata ssp. temperata) metabolites. Kor. J. Appl. Entomol. 50, 171-178.   DOI
32 Sequiera, R., Dixon, A.F.G., 1996. Life history responses to host quality changes and competition in the Turkey-oak aphid. Eur. J. Entomol. 93, 53-58.
33 Singh, O.P., Parihar, S.B.B., 1988. Effect of different hosts on the development of Heliothis armigera (Hubner). Bull. Entomol. Res. 29, 2168-2172.
34 Thakur, A., Kaur, S., Kaur, A., Singh, V., 2013. Enhanced resistance to Spodoptera litura in endophyte infected cauliflower plants. Environ. Entomol. 42, 240-246.   DOI
35 Thompson, S.N., 2003. Trehalose: the insect blood sugar. Adv. Insect Physiol. 31, 205-283.   DOI
36 Wang, Y., Jorda, M., Jones, P.L., Maleszka, R., Ling, X., Robertson, H.M., Mizzen, C.A., Peinado, M.A., Robinson, G.E., 2006. Functional CpG methylation system in a social insect. Science 314, 645-647.   DOI
37 Williams, M.R., 1990. Cotton insect losses 1998. In: Dugger, D., Richter, D. (Eds.), Proceedins, Beltwide Cotton Conference. National Cotton Council. Memphis. TN. pp. 785-806.
38 Wu, Q., Brown, M.R., 2006. Signaling and function of insulin-like peptides in insects. Annu. Rev. Entomol. 51, 1-24.   DOI
39 Xiang, H., Zhu, J., Chen, Q., Dai, F., Li, X., Li, M., Zhang, H., Zhang, G., Li, D., Dong, Y., 2010. Single base-resolution methylome of the silkworm reveals a sparse epigenomic map. Nat. Biotechnol. 28, 516-520.   DOI
40 Xiang, H., Li, X. Dai, F. Xu, X. Tan, A. Chen, L. Zhang, G. Ding, Y. Li, Q. Ligan, J. Wailed, A. Guo, Q. XGA, Q. Wang, J. Wang, W. 2013. Comparative methylomics between domesticated and wild silkworms implies possible epigenetic influences on silkworm domestication. BMC Genomics 14, 646.   DOI