• 제목/요약/키워드: Epigenetic

검색결과 439건 처리시간 0.033초

Oxidative Stress, Nrf2, and Epigenetic Modification Contribute to Anticancer Drug Resistance

  • Kang, Kyoung Ah;Hyun, Jin Won
    • Toxicological Research
    • /
    • 제33권1호
    • /
    • pp.1-5
    • /
    • 2017
  • Nuclear factor E2-related factor 2 (Nrf2), a transcription factor, controls the expression of genes encoding cytoprotective proteins, including antioxidant enzymes that combat oxidative and electrophilic stress to maintain redox homeostasis. However, recent studies demonstrated that, in cancer, aberrant activation of Nrf2 by epigenetic alterations promotes high expression of cytoprotective proteins, which can decrease the efficacy of anticancer drugs used for chemotherapy. In this review, we summarize recent findings regarding the relationship between oxidative stress, Nrf2, epigenetic modification, and anticancer drug resistance, which should aid in development of new strategies to improve chemotherapeutic efficacy.

HOTAIR Long Non-coding RNA: Characterizing the Locus Features by the In Silico Approaches

  • Hajjari, Mohammadreza;Rahnama, Saghar
    • Genomics & Informatics
    • /
    • 제15권4호
    • /
    • pp.170-177
    • /
    • 2017
  • HOTAIR is an lncRNA that has been known to have an oncogenic role in different cancers. There is limited knowledge of genetic and epigenetic elements and their interactions for the gene encoding HOTAIR. Therefore, understanding the molecular mechanism and its regulation remains to be challenging. We used different in silico analyses to find genetic and epigenetic elements of HOTAIR gene to gain insight into its regulation. We reported different regulatory elements including canonical promoters, transcription start sites, CpGIs as well as epigenetic marks that are potentially involved in the regulation of HOTAIR gene expression. We identified repeat sequences and single nucleotide polymorphisms that are located within or next to the CpGIs of HOTAIR. Our analyses may help to find potential interactions between genetic and epigenetic elements of HOTAIR gene in the human tissues and show opportunities and limitations for researches on HOTAIR gene in future studies.

Use of DNA Methylation for Cancer Detection and Molecular Classification

  • Zhu, Jingde;Yao, Xuebiao
    • BMB Reports
    • /
    • 제40권2호
    • /
    • pp.135-141
    • /
    • 2007
  • Conjugation of the methyl group at the fifth carbon of cytosines within the palindromic dinucleotide 5'-CpG-3' sequence (DNA methylation) is the best studied epigenetic mechanism, which acts together with other epigenetic entities: histone modification, chromatin remodeling and microRNAs to shape the chromatin structure of DNA according to its functional state. The cancer genome is frequently characterized by hypermethylation of specific genes concurrently with an overall decrease in the level of 5-methyl cytosine, the pathological implication of which to the cancerous state has been well established. While the latest genome-wide technologies have been applied to classify and interpret the epigenetic layer of gene regulation in the physiological and disease states, the epigenetic testing has also been seriously explored in clinical practice for early detection, refining tumor staging and predicting disease recurrence. This critique reviews the latest research findings on the use of DNA methylation in cancer diagnosis, prognosis and staging/classification.

Researches of Epigenetic Epidemiology for Infections and Radiation as Carcinogen

  • Bae, Jong-Myon
    • Journal of Preventive Medicine and Public Health
    • /
    • 제51권4호
    • /
    • pp.169-172
    • /
    • 2018
  • In recent years, a number of studies have been reported on the various types of cancer arising from epigenetic alterations, including reports that these epigenetic alterations occur as a result of radiation exposure or infection. Thyroid cancer and breast cancer, in particular, have high cancer burden, and it has been confirmed that radiation exposure or onco-viral infection are linked to increased risk of development of these two types of cancer, respectively. Thus, the environment-epigenetic alteration-cancer occurrence (EEC) hypothesis has been suggested. This paper reviews the trends in research supporting this hypothesis for radiation exposure and onco-viral infection. If more evidences accumulate for the EEC hypothesis from future research, those findings may greatly aid in the prevention, early diagnosis, treatment, and prognosis of the thyroid cancer and breast cancer.

Epigenetic modification is linked to Alzheimer's disease: is it a maker or a marker?

  • Lee, Jung-Hee;Ryu, Hoon
    • BMB Reports
    • /
    • 제43권10호
    • /
    • pp.649-655
    • /
    • 2010
  • Alzheimer's disease (AD) is the most common age-dependent neurodegenerative disorder and shows progressive memory loss and cognitive decline. Intraneuronal filaments composed of aggregated hyperphosphorylated tau protein, called neurofibrillary tangles, along with extracellular accumulations of amyloid $\beta$ protein (A$\beta$), called senile plaques, are known to be the neuropathological hallmarks of AD. In light of recent studies, epigenetic modification has emerged as one of the pathogenic mechanisms of AD. Epigenetic changes encompass an array of molecular modifications to both DNA and chromatin, including transcription factors and cofactors. In this review, we summarize how DNA methylation and changes to DNA chromatin packaging by post-translational histone modification are involved in AD. In addition, we describe the role of SIRTs, histone deacetylases, and the effect of SIRT-modulating drugs on AD. Lastly, we discuss how amyloid precursor protein (APP) intracellular domain (AICD) regulates neuronal transcription. Our understanding of the epigenomes and transcriptomes of AD may warrant future identification of novel biological markers and beneficial therapeutic targets for AD.

Epigenetic biomarkers: a step forward for understanding periodontitis

  • Lindroth, Anders M.;Park, Yoon Jung
    • Journal of Periodontal and Implant Science
    • /
    • 제43권3호
    • /
    • pp.111-120
    • /
    • 2013
  • Periodontitis is a common oral disease that is characterized by infection and inflammation of the tooth supporting tissues. While its incidence is highly associated with outgrowth of the pathogenic microbiome, some patients show signs of predisposition and quickly fall into recurrence after treatment. Recent research using genetic associations of candidates as well as genome-wide analysis highlights that variations in genes related to the inflammatory response are associated with an increased risk of periodontitis. Intriguingly, some of the genes are regulated by epigenetic modifications, supposedly established and reprogrammed in response to environmental stimuli. In addition, the treatment with epigenetic drugs improves treatment of periodontitis in a mouse model. In this review, we highlight some of the recent progress identifying genetic factors associated with periodontitis and point to promising approaches in epigenetic research that may contribute to the understanding of molecular mechanisms involving different responses in individuals and the early detection of predispositions that may guide in future oral treatment and disease prevention.

Metabolic Signaling to Epigenetic Alterations in Cancer

  • Kim, Jung-Ae;Yeom, Young Il
    • Biomolecules & Therapeutics
    • /
    • 제26권1호
    • /
    • pp.69-80
    • /
    • 2018
  • Cancer cells reprogram cellular metabolism to support the malignant features of tumors, such as rapid growth and proliferation. The cancer promoting effects of metabolic reprogramming are found in many aspects: generating additional energy, providing more anabolic molecules for biosynthesis, and rebalancing cellular redox states in cancer cells. Metabolic pathways are considered the pipelines to supply metabolic cofactors of epigenetic modifiers. In this regard, cancer metabolism, whereby cellular metabolite levels are greatly altered compared to normal levels, is closely associated with cancer epigenetics, which is implicated in many stages of tumorigenesis. In this review, we provide an overview of cancer metabolism and its involvement in epigenetic modifications and suggest that the metabolic adaptation leading to epigenetic changes in cancer cells is an important non-genetic factor for tumor progression, which cooperates with genetic causes. Understanding the interaction of metabolic reprogramming with epigenetics in cancers may help to develop novel or highly improved therapeutic strategies that target cancer metabolism.

Epigenetic Reprogramming in Cloned Embryos

  • Kang, Yong-Kook;Han, Yong-Mahn;Lee, Kyung-Kwang
    • 한국동물번식학회:학술대회논문집
    • /
    • 한국동물번식학회 2001년도 발생공학 국제심포지움 및 학술대회 발표자료집
    • /
    • pp.25-31
    • /
    • 2001
  • During early development, a dramatic reduction in methylation levels occurs in mouse (Monk et al., 1987). The process of epigenetic reprogramming in early embryos erases gamete-specific methylation patterns inherited from the parents (Howlett & Reik 1991, Monk et al., 1987, Oswald et al., 2000, Sanford et al., 1984). This genome-wide demethylation process may be a prerequisite for the formation of pluripotent stem cells that are important for the later development (Reik & Surani 1997). During post-implantation development, a wave of de novo methylation takes place; most of the genomic DNA is methylated at defined developmental timepoints, whereas tissue-specific genes undergo demethylation in their tissues of expression (Kafri et al., 1992, Razin & Kafri 1994). Another demethylation-remethylation cycle of epigenetic reprogramming takes place during gametogenesis and is necessary for resetting of genomic imprinting (Solter 1988). The dynamic epigenetic reprogramming events appear to be basic and are probably conserved in eutherian mammals (see below). (omitted)

  • PDF

The interaction between gut microbiome and nutrients on development of human disease through epigenetic mechanisms

  • Lee, Ho-Sun
    • Genomics & Informatics
    • /
    • 제17권3호
    • /
    • pp.24.1-24.8
    • /
    • 2019
  • Early environmental exposure is recognized as a key factor for long-term health based on the Developmental Origins of Health and Disease hypothesis. It considers that early-life nutrition is now being recognized as a major contributor that may permanently program change of organ structure and function toward the development of diseases, in which epigenetic mechanisms are involved. Recent researches indicate early-life environmental factors modulate the microbiome development and the microbiome might be mediate diet-epigenetic interaction. This review aims to define which nutrients involve microbiome development during the critical window of susceptibility to disease, and how microbiome modulation regulates epigenetic changes and influences human health and future prevention strategies.

만성 통증과 후성유전학에 대한 문헌 고찰 (Epigenetic Modification in Chronic Pain: A Literature Review)

  • 송은모;조홍석;김고운;조재흥;박히준;송미연
    • 한방재활의학과학회지
    • /
    • 제30권1호
    • /
    • pp.63-78
    • /
    • 2020
  • Objectives To review the epigenetic modifications involved in chronic pain and to improve individualized intervention for the chronic pain. Methods Focused literature review. Results Significant laboratory and clinical data support that epigenetic modifications have a potential role for development of chronic pain. Conclusions Epigenetic approach may identify mechanisms critical to the development of chronic pain after injury, and may provide new pathways and target mechanisms for future treatment and individualized medicine.