Browse > Article
http://dx.doi.org/10.4062/biomolther.2017.185

Metabolic Signaling to Epigenetic Alterations in Cancer  

Kim, Jung-Ae (Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology)
Yeom, Young Il (Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology)
Publication Information
Biomolecules & Therapeutics / v.26, no.1, 2018 , pp. 69-80 More about this Journal
Abstract
Cancer cells reprogram cellular metabolism to support the malignant features of tumors, such as rapid growth and proliferation. The cancer promoting effects of metabolic reprogramming are found in many aspects: generating additional energy, providing more anabolic molecules for biosynthesis, and rebalancing cellular redox states in cancer cells. Metabolic pathways are considered the pipelines to supply metabolic cofactors of epigenetic modifiers. In this regard, cancer metabolism, whereby cellular metabolite levels are greatly altered compared to normal levels, is closely associated with cancer epigenetics, which is implicated in many stages of tumorigenesis. In this review, we provide an overview of cancer metabolism and its involvement in epigenetic modifications and suggest that the metabolic adaptation leading to epigenetic changes in cancer cells is an important non-genetic factor for tumor progression, which cooperates with genetic causes. Understanding the interaction of metabolic reprogramming with epigenetics in cancers may help to develop novel or highly improved therapeutic strategies that target cancer metabolism.
Keywords
Cancer; Metabolism; Epigenetics; Acetylation; Methylation; Metastasis;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Morrish, F., Noonan, J., Perez-Olsen, C., Gafken, P. R., Fitzgibbon, M., Kelleher, J., VanGilst, M. and Hockenbery, D. (2010) Myc-dependent mitochondrial generation of acetyl-CoA contributes to fatty acid biosynthesis and histone acetylation during cell cycle entry. J. Biol. Chem. 285, 36267-36274.   DOI
2 Mullen, A. R., Wheaton, W. W., Jin, E. S., Chen, P. H., Sullivan, L. B., Cheng, T., Yang, Y., Linehan, W. M., Chandel, N. S. and DeBerardinis, R. J. (2011) Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature 481, 385-388.
3 Newman, J. C. and Verdin, E. (2014) ${\beta}$-hydroxybutyrate: much more than a metabolite. Diabetes Res. Clin. Pract. 106, 173-181.
4 Pan, M., Reid, M. A., Lowman, X. H., Kulkarni, R. P., Tran, T. Q., Liu, X., Yang, Y, Hernandez-Davies, J. E., Rosales, K. K., Li, H., Hugo, W., Song, C., Xu, X., Schones, D. E., Ann, D. K., Gradinaru, V., Lo, R. S., Locasale, J. W. and Kong, M. (2016) Regional glutamine deficiency in tumours promotes dedifferentiation through inhibition of histone demethylation. Nat. Cell Biol. 18, 1090-1101.
5 Parsons, D. W., Jones, S., Zhang, X., Lin, J. C., Leary, R. J., Angenendt, P. et al. (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321, 1807-1812.   DOI
6 Pavlova, N. N. and Thompson, C. B. (2016) The emerging hallmarks of cancer metabolism. Cell Metab. 23, 27-47.
7 Pietrocola, F., Bravo-San Pedro, J. M., Madeo, F. and Kroemer, G. (2015) Acetyl coenzyme A: a central metabolite and second messenger. Cell Metab. 21, 805-821.   DOI
8 Rankin, E. B. and Giaccia, A. J. (2016) Hypoxic control of metastasis. Science 352, 175-180.   DOI
9 Roe, J. S., Hwang, C. I., Somerville, T. D. D., Milazzo, J. P., Lee, E. J., Da Silva, B. et al. (2017) Enhancer reprogramming promotes pancreatic cancer metastasis. Cell 170, 875-888.e20.   DOI
10 Semenza, G. L. (2013) HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. J. Clin. Invest. 123, 3664-3671.   DOI
11 Seto, E. and Yoshida, M. (2014) Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb. Perspect. Biol. 6, a018713.   DOI
12 Shi, L. and Tu, B. P. (2015) Acetyl-CoA and the regulation of metabolism: mechanisms and consequences. Curr. Opin. Cell Biol. 33, 125-131.   DOI
13 Shim, E. H., Livi, C. B., Rakheja, D., Tan, J., Benson, D., Parekh, V., Kho, E. Y., Ghosh, A. P., Kirkman, R., Velu, S., Dutta, S., Chenna, B., Rea, S. L., Mishur, R. J., Li, Q., Johnson-Pais, T. L., Guo, L., Bae, S., Wei, S., Block, K. and Sudarshan, S. (2014) L-2-Hydroxyglutarate: an epigenetic modifier and putative oncometabolite in renal cancer. Cancer Discov. 4, 1290-1298.   DOI
14 Shimazu, T., Hirschey, M. D., Newman, J., He, W., Shirakawa, K., Le Moan, N., Grueter, C. A., Lim, H., Saunders, L. R., Stevens, R. D., Newgard, C. B., Farese, R. V., Jr., de Cabo, R., Ulrich, S., Akassoglou, K. and Verdin, E. (2013) Suppression of oxidative stress by ${\beta}$-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science 339, 211-214.   DOI
15 Shyh-Chang, N., Locasale, J. W., Lyssiotis, C. A., Zheng, Y., Teo, R. Y., Ratanasirintrawoot, S., Zhang, J., Onder, T., Unternaehrer, J. J., Zhu, H., Asara, J. M., Daley, G. Q. and Cantley, L. C. (2013) Influence of threonine metabolism on S-adenosylmethionine and histone methylation. Science 339, 222-226.   DOI
16 Song, Y., Wu, F. and Wu, J. (2016) Targeting histone methylation for cancer therapy: enzymes, inhibitors, biological activity and perspectives. J. Hematol. Oncol. 9, 49.   DOI
17 Bardella, C., Pollard, P. J. and Tomlinson, I. (2011) SDH mutations in cancer. Biochim. Biophys. Acta 1807, 1432-1443.
18 Agrawal-Singh, S., Isken, F., Agelopoulos, K., Klein, H. U., Thoennissen, N. H., Koehler, G., Hascher, A., Bäumer, N., Berdel, W. E., Thiede, C., Ehninger, G., Becker, A., Schlenke, P., Wang, Y., McClelland, M., Krug, U., Koschmieder, S., Büchner, T., Yu, D. Y., Singh, S. V., Hansen, K., Serve, H., Dugas, M. and Müller-Tidow, C. (2012) Genome-wide analysis of histone H3 acetylation patterns in AML identifies PRDX2 as an epigenetically silenced tumor suppressor gene. Blood 119, 2346-2357.   DOI
19 Anderson, O. S., Sant, K. E. and Dolinoy, D. C. (2012) Nutrition and epigenetics: an interplay of dietary methyl donors, one-carbon metabolism and DNA methylation. J. Nutr. Biochem. 23, 853-859.   DOI
20 Bai, P., Canto, C., Oudart, H., Brunyánszki, A., Cen, Y., Thomas, C., Yamamoto, H., Huber, A., Kiss, B., Houtkooper, R. H., Schoonjans, K., Schreiber, V., Sauve, A. A., Menissier-de Murcia, J. and Auwerx, J. (2011) PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation. Cell Metab. 13, 461-468.
21 Belinsky, S. A., Nikula, K. J., Palmisano, W. A., Michels, R., Saccomanno, G., Gabrielson, E., Baylin, S. B. and Herman, J. G. (1998) Aberrant methylation of p16(INK4a) is an early event in lung cancer and a potential biomarker for early diagnosis. Proc. Natl. Acad. Sci. U.S.A. 95, 11891-11896.   DOI
22 Brown, R., Curry, E., Magnani, L., Wilhelm-Benartzi, C. S. and Borley, J. (2014) Poised epigenetic states and acquired drug resistance in cancer. Nat. Rev. Cancer 14, 747-753.   DOI
23 Bernstein, B. E., Mikkelsen, T. S., Xie, X., Kamal, M., Huebert, D. J., Cuff, J., Fry, B., Meissner, A., Wernig, M., Plath, K., Jaenisch, R., Wagschal, A., Feil, R., Schreiber, S. L. and Lander, E. S. (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315-326.   DOI
24 Boukouris, A. E., Zervopoulos, S. D. and Michelakis, E. D. (2016) Metabolic enzymes moonlighting in the nucleus: metabolic regulation of gene transcription. Trends Biochem. Sci. 41, 712-730.   DOI
25 Brannon, A. R., Vakiani, E., Sylvester, B. E., Scott, S. N., McDermott, G., Shah, R. H., Kania, K., Viale, A., Oschwald, D. M., Vacic, V., Emde, A. K., Cercek, A., Yaeger, R., Kemeny, N. E., Saltz, L. B., Shia, J., D'Angelica, M. I., Weiser, M. R., Solit, D. B. and Berger, M. F. (2014) Comparative sequencing analysis reveals high genomic concordance between matched primary and metastatic colorectal cancer lesions. Genome Biol. 15, 454.   DOI
26 Kera, Y., Katoh, Y., Ohta, M., Matsumoto, M., Takano-Yamamoto, T. and Igarashi, K. (2013) Methionine adenosyltransferase II-dependent histone H3K9 methylation at the COX-2 gene locus. J. Biol. Chem. 288, 13592-13601.   DOI
27 Intlekofer, A. M., Dematteo, R. G., Venneti, S., Finley, L. W., Lu, C., Judkins, A. R., Rustenburg, A. S., Grinaway, P. B., Chodera, J. D., Cross, J. R. and Thompson, C. B. (2015) Hypoxia Induces Production of L-2-Hydroxyglutarate. Cell Metab. 22, 304-311.   DOI
28 Jones, P. A., Issa, J. P. and Baylin, S. (2016) Targeting the cancer epigenome for therapy. Nat. Rev. Genet. 17, 630-641.   DOI
29 Katoh, Y., Ikura, T., Hoshikawa, Y., Tashiro, S., Ito, T., Ohta, M., Kera, Y., Noda, T. and Igarashi, K. (2011) Methionine adenosyltransferase II serves as a transcriptional corepressor of Maf oncoprotein. Mol. Cell 41, 554-566.
30 Kim, S. Y. (2015) Cancer metabolism: targeting cancer universality. Arch. Pharm. Res. 38, 299-301.   DOI
31 Latham, T., Mackay, L., Sproul, D., Karim, M., Culley, J., Harrison, D. J., Hayward, L., Langridge-Smith, P., Gilbert, N. and Ramsahoye, B. H. (2012) Lactate, a product of glycolytic metabolism, inhibits histone deacetylase activity and promotes changes in gene expression. Nucleic Acids Res. 40, 4794-4803.   DOI
32 Valastyan, S. and Weinberg, R. A. (2011) Tumor metastasis: molecular insights and evolving paradigms. Cell 147, 275-292.   DOI
33 Sutendra, G., Kinnaird, A., Dromparis, P., Paulin, R., Stenson, T. H., Haromy, A., Hashimoto, K., Zhang, N., Flaim, E. and Michelakis, E. D. (2014) A nuclear pyruvate dehydrogenase complex is important for the generation of acetyl-CoA and histone acetylation. Cell 158, 84-97.   DOI
34 Suzuki, K., Sakaguchi, M., Tanaka, S., Yoshimoto, T. and Takaoka, M. (2014) Prolyl oligopeptidase inhibition-induced growth arrest of human gastric cancer cells. Biochem. Biophys. Res. Commun. 443, 91-96.   DOI
35 TeSlaa, T., Chaikovsky, A. C., Lipchina, I., Escobar, S. L., Hochedlinger, K., Huang, J., Graeber, T. G., Braas, D. and Teitell, M. A. (2016) ${\alpha}$-ketoglutarate accelerates the initial differentiation of primed human pluripotent stem cells. Cell Metab. 24, 485-493.   DOI
36 van den Beucken, T., Koch, E., Chu, K., Rupaimoole, R., Prickaerts, P., Adriaens, M., Voncken, J. W., Harris, A. L., Buffa, F. M., Haider, S., Starmans, M. H. W., Yao, C. Q., Ivan, M., Ivan, C., Pecot, C. V., Boutros, P. C., Sood, A. K., Koritzinsky, M. and Wouters, B. G. (2014) Hypoxia promotes stem cell phenotypes and poor prognosis through epigenetic regulation of DICER. Nat. Commun. 5, 5203.
37 Vander Heiden, M. G., Cantley, L. C. and Thompson, C. B. (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029-1033.   DOI
38 Candido, E. P., Reeves, R. and Davie, J. R. (1978) Sodium butyrate inhibits histone deacetylation in cultured cells. Cell 14, 105-113.   DOI
39 Bulusu, V., Tumanov, S., Michalopoulou, E., van den Broek, N. J., MacKay, G., Nixon, C., Dhayade, S., Schug, Z. T., Vande Voorde, J., Blyth, K., Gottlieb, E., Vazquez, A. and Kamphorst, J. J. (2017) Acetate recapturing by nuclear acetyl-CoA synthetase 2 prevents loss of histone acetylation during oxygen and serum limitation. Cell Rep. 18, 647-658.   DOI
40 Cai, L., Sutter, B. M., Li, B. and Tu, B. P. (2011) Acetyl-CoA induces cell growth and proliferation by promoting the acetylation of histones at growth genes. Mol. Cell 42, 426-437.   DOI
41 Djebali, S., Davis, C. A., Merkel, A., Dobin, A., Lassmann, T., Mortazavi, A. et al. (2012) Landscape of transcription in human cells. Nature 489, 101-108.   DOI
42 Le, A., Lane, A. N., Hamaker, M., Bose, S., Gouw, A., Barbi, J., Tsukamoto, T., Rojas, C. J., Slusher, B. S., Zhang, H., Zimmerman, L. J., Liebler, D. C., Slebos, R. J., Lorkiewicz, P. K., Higashi, R. M., Fan, T. W. and Dang, C. V. (2012) Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metab. 15, 110-121.   DOI
43 Lee, J. V., Carrer, A., Shah, S., Snyder, N. W., Wei, S., Venneti, S. et al. (2014) Akt-dependent metabolic reprogramming regulates tumor cell histone acetylation. Cell Metab. 20, 306-319.   DOI
44 Vander Heiden, M. G. and DeBerardinis, R. J. (2017) Understanding the intersections between metabolism and cancer biology. Cell 168, 657-669.   DOI
45 Wang, Z., Zang, C., Rosenfeld, J. A., Schones, D. E., Barski, A., Cuddapah, S., Cui, K., Roh, T. Y., Peng, W., Zhang, M. Q. and Zhao, K. (2008) Combinatorial patterns of histone acetylations and methylations in the human genome. Nat. Genet. 40, 897-903.   DOI
46 Canto, C., Gerhart-Hines, Z., Feige, J. N., Lagouge, M., Noriega, L., Milne, J. C., Elliott, P. J., Puigserver, P. and Auwerx, J. (2009) AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458, 1056-1060.   DOI
47 Carey, B. W., Finley, L. W., Cross, J. R., Allis, C. D. and Thompson, C. B. (2015) Intracellular ${\alpha}$-ketoglutarate maintains the pluripotency of embryonic stem cells. Nature 518, 413-416.   DOI
48 Delmore, J. E., Issa, G. C., Lemieux, M. E., Rahl, P. B., Shi, J., Jacobs, H. M., Kastritis, E., Gilpatrick, T., Paranal, R. M., Qi, J., Chesi, M., Schinzel, A. C., McKeown, M. R., Heffernan, T. P., Vakoc, C. R., Bergsagel, P. L., Ghobrial, I. M., Richardson, P. G., Young, R. A., Hahn, W. C., Anderson, K. C., Kung, A. L., Bradner, J. E. and Mitsiades, C. S. (2011) BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 146, 904-917.   DOI
49 Lockwood, W. W., Zejnullahu, K., Bradner, J. E. and Varmus H. (2012) Sensitivity of human lung adenocarcinoma cell lines to targeted inhibition of BET epigenetic signaling proteins. Proc. Natl. Acad. Sci. U.S.A. 109, 19408-19413.   DOI
50 Letouze, E., Martinelli, C., Loriot, C., Burnichon, N., Abermil, N., Ottolenghi, C., Janin, M., Menara, M., Nguyen, A. T., Benit, P., Buffet, A., Marcaillou, C., Bertherat, J., Amar, L., Rustin, P., De Reyniès, A., Gimenez-Roqueplo, A. P. and Favier, J. (2013) SDH mutations establish a hypermethylator phenotype in paraganglioma. Cancer Cell 23, 739-752.
51 Lu, C., Ward, P. S., Kapoor, G. S., Rohle, D., Turcan, S., Abdel-Wahab, O., Edwards, C. R., Khanin, R., Figueroa, M. E., Melnick, A., Wellen, K. E., O'Rourke, D. M., Berger, S. L., Chan, T. A., Levine, R. L., Mellinghoff, I. K. and Thompson, C. B. (2012) IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature 483, 474-478.
52 Mashimo, T., Pichumani, K., Vemireddy, V., Hatanpaa, K. J., Singh, D. K., Sirasanagandla, S., Nannepaga, S., Piccirillo, S. G., Kovacs, Z., Foong, C., Huang, Z., Barnett, S., Mickey, B. E., DeBerardinis, R. J., Tu, B. P., Maher, E. A. and Bachoo, R. M. (2014) Acetate is a bioenergetic substrate for human glioblastoma and brain metastases. Cell 159, 1603-1614.   DOI
53 Donohoe, D. R., Collins, L. B., Wali, A., Bigler, R., Sun, W. and Bultman, S. J. (2012) The Warburg effect dictates the mechanism of butyrate-mediated histone acetylation and cell proliferation. Mol. Cell 48, 612-626.   DOI
54 Easwaran, H., Tsai, H. C. and Baylin, S. B. (2014) Cancer epigenetics: tumor heterogeneity, plasticity of stem-like states, and drug resistance. Mol. Cell 54, 716-727.
55 Ehrlich, M. (2009) DNA hypomethylation in cancer cells. Epigenomics 1, 239-259.   DOI
56 Maddocks, O. D., Labuschagne, C. F., Adams, P. D. and Vousden, K. H. (2016) Serine metabolism supports the methionine cycle and DNA/RNA Methylation through De Novo ATP synthesis in cancer cells. Mol. Cell 61, 210-221.
57 Martinez-Outschoorn, U. E., Prisco, M., Ertel, A., Tsirigos, A., Lin, Z., Pavlides, S., Wang, C., Flomenberg, N., Knudsen, E. S., Howell, A., Pestell, R. G., Sotgia, F. and Lisanti, M. P. (2011) Ketones and lactate increase cancer cell "stemness," driving recurrence, metastasis and poor clinical outcome in breast cancer: achieving personalized medicine via Metabolo-Genomics. Cell Cycle 10, 1271-1286.   DOI
58 Wise, D. R., DeBerardinis, R. J., Mancuso, A., Sayed, N., Zhang, X. Y., Pfeiffer, H. K., Nissim, I., Daikhin, E., Yudkoff, M., McMahon, S. B. and Thompson, C. B. (2008) Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc. Natl. Acad. Sci. U.S.A. 105, 18782-18787.   DOI
59 Ward, P. S., Patel, J., Wise, D. R., Abdel-Wahab, O., Bennett, B. D., Coller, H. A., Cross, J. R., Fantin, V. R., Hedvat, C. V., Perl, A. E., Rabinowitz, J. D., Carroll, M., Su, S. M., Sharp, K. A., Levine, R. L. and Thompson, C. B. (2010) The common feature of leukemiaassociated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting ${\alpha}$-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 17, 225-234.   DOI
60 Wellen, K. E., Hatzivassiliou, G., Sachdeva, U. M., Bui, T. V., Cross, J. R. and Thompson, C. B. (2009) ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324, 1076-1080.   DOI
61 Figueroa, M. E., Abdel-Wahab, O., Lu, C., Ward, P. S., Patel, J., Shih, A. et al. (2010) Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 18, 553-567.
62 Fan, J., Hitosugi, T., Chung, T. W., Xie, J., Ge, Q., Gu, T. L., Polakiewicz, R. D., Chen, G. Z., Boggon, T. J., Lonial, S., Khuri, F. R., Kang, S. and Chen, J. (2011) Tyrosine phosphorylation of lactate dehydrogenase A is important for NADH/NAD(+) redox homeostasis in cancer cells. Mol. Cell. Biol. 31, 4938-4950.   DOI
63 Fan, J., Krautkramer, K. A., Feldman, J. L. and Denu, J. M. (2015) Metabolic regulation of histone post-translational modifications. ACS Chem. Biol. 10, 95-108.   DOI
64 Feinberg, A. P., Koldobskiy, M. A. and Göndör, A. (2016) Epigenetic modulators, modifiers and mediators in cancer aetiology and progression. Nat. Rev. Genet. 17, 284-299.   DOI
65 Flavahan, W. A., Drier, Y., Liau, B. B., Gillespie, S. M., Venteicher, A. S., Stemmer-Rachamimov, A. O., Suva, M. L. and Bernstein, B. E. (2016) Insulator dysfunction and oncogene activation in IDH mutant gliomas. Nature 529, 110-114.   DOI
66 Friis, R. M., Wu, B. P., Reinke, S. N., Hockman, D. J., Sykes, B. D. and Schultz, M. C. (2009) A glycolytic burst drives glucose induction of global histone acetylation by picNuA4 and SAGA. Nucleic Acids Res. 37, 3969-3980.   DOI
67 Xiao, M., Yang, H., Xu, W., Ma, S., Lin, H., Zhu, H., Liu, L., Liu, Y., Yang, C., Xu, Y., Zhao, S., Ye, D., Xiong, Y. and Guan, K. L. (2012) Inhibition of ${\alpha}$-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes Dev. 26, 1326-1338.
68 McDonald, O. G., Li, X., Saunders, T., Tryggvadottir, R., Mentch, S. J., Warmoes, M. O., Word, A. E., Carrer, A., Salz, T. H., Natsume, S., Stauffer, K. M., Makohon-Moore, A., Zhong, Y., Wu, H., Wellen, K. E., Locasale, J. W., Iacobuzio-Donahue, C. A. and Feinberg, A. P. (2017) Epigenomic reprogramming during pancreatic cancer progression links anabolic glucose metabolism to distant metastasis. Nat. Genet. 49, 367-376.   DOI
69 McDonnell, E., Crown, S. B., Fox, D. B., Kitir, B., Ilkayeva, O. R., Olsen, C. A., Grimsrud, P. A. and Hirschey, M. D. (2016) Lipids reprogram metabolism to become a major carbon source for histone acetylation. Cell Rep. 17, 1463-1472.   DOI
70 Wise, D. R., Ward, P. S., Shay, J. E., Cross, J. R., Gruber, J. J., Sachdeva, U. M., Platt, J. M., DeMatteo, R. G., Simon, M. C. and Thompson, C. B. (2011) Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of ${\alpha}$-ketoglutarate to citrate to support cell growth and viability. Proc. Natl. Acad. Sci. U.S.A. 108, 19611-19616.   DOI
71 Warburg, O. (1956) On respiratory impairment in cancer cells. Science 124, 269-270.
72 Hitosugi, T., Kang, S., Vander Heiden, M. G., Chung, T. W., Elf, S., Lythgoe, K., Dong, S., Lonial, S., Wang, X., Chen, G. Z., Xie, J., Gu, T. L., Polakiewicz, R. D., Roesel, J. L., Boggon, T. J., Khuri, F. R., Gilliland, D. G., Cantley, L. C., Kaufman, J. and Chen, J. (2009) Tyrosine phosphorylation inhibits PKM2 to promote the Warburg effect and tumor growth. Sci. Signal. 2, ra73.
73 Harikumar, A. and Meshorer, E. (2015) Chromatin remodeling and bivalent histone modifications in embryonic stem cells. EMBO Rep. 16, 1609-1619.   DOI
74 Mentch, S. J., Mehrmohamadi, M., Huang, L., Liu, X., Gupta, D., Mattocks, D., Gomez Padilla, P., Ables, G., Bamman, M. M., Thalacker-Mercer, A. E., Nichenametla, S. N. and Locasale, J. W. (2015) Histone methylation dynamics and gene regulation occur through the sensing of one-carbon metabolism. Cell Metab. 22, 861-873.
75 Metallo, C. M., Gameiro, P. A., Bell, E. L., Mattaini, K. R., Yang, J., Hiller, K., Jewell, C. M., Johnson, Z. R., Irvine, D. J., Guarente, L., Kelleher, J. K., Vander Heiden, M. G., Iliopoulos, O. and Stephanopoulos, G. (2011) Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481, 380-384.
76 Migita, T., Narita, T., Nomura, K., Miyagi, E., Inazuka, F., Matsuura, M., Ushijima, M., Mashima, T., Seimiya, H., Satoh, Y., Okumura, S., Nakagawa, K. and Ishikawa, Y. (2008) ATP citrate lyase: activation and therapeutic implications in non-small cell lung cancer. Cancer Res. 68, 8547-8554.
77 Miller, D. M., Thomas, S. D., Islam, A., Muench, D. and Sedoris, K. (2012) c-Myc and cancer metabolism. Clin. Cancer Res. 18, 5546-5553.   DOI
78 Hay, N. (2016) Reprogramming glucose metabolism in cancer: can it be exploited for cancer therapy? Nat. Rev. Cancer 16, 635-649.
79 Hino, S., Sakamoto, A., Nagaoka, K., Anan, K., Wang, Y., Mimasu, S., Umehara, T., Yokoyama, S., Kosai, K. and Nakao, M. (2012) FADdependent lysine-specific demethylase-1 regulates cellular energy expenditure. Nat. Commun. 3, 758.   DOI
80 Hnisz, D., Abraham, B. J., Lee, T. I., Lau, A., Saint-André, V., Sigova, A. A., Hoke, H. A. and Young, R. A. (2013) Super-enhancers in the control of cell identity and disease. Cell 155, 934-947.   DOI
81 Hojfeldt, J. W., Agger, K. and Helin, K. (2013) Histone lysine demethylases as targets for anticancer therapy. Nat. Rev. Drug Discov. 12, 917-930.   DOI
82 Hwang, I. Y., Kwak, S., Lee, S., Kim, H., Lee, S. E., Kim, J. H., Kim, Y. A., Jeon, Y. K., Chung, D. H., Jin, X., Park, S., Jang, H., Cho, E. J. and Youn, H. D. (2016) Psat1-dependent fluctuations in ${\alpha}$-ketoglutarate affect the timing of ESC differentiation. Cell Metab. 24, 494-501.   DOI
83 Gaude, E. and Frezza, C. (2014) Defects in mitochondrial metabolism and cancer. Cancer Metab. 2, 10.   DOI
84 Osthus, R. C., Shim, H., Kim, S., Li, Q., Reddy, R., Mukherjee, M., Xu, Y., Wonsey, D., Lee, L. A. and Dang, C. V. (2000) Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. J. Biol. Chem. 275, 21797-21800.
85 Yachida, S., Jones, S., Bozic, I., Antal, T., Leary, R., Fu, B., Kamiyama, M., Hruban, R. H., Eshleman, J. R., Nowak, M. A., Velculescu, V. E., Kinzler, K. W., Vogelstein, B. and Iacobuzio-Donahue, C. A. (2010) Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 467, 1114-1117.
86 Yang, S. J., Park, Y. S., Cho, J. H., Moon, B., An, H., Lee, J. Y., Xie, Z., Wang, Y., Pocalyko, D., Lee, D. C., Sohn, H. A., Kang, M., Kim, J. Y., Kim, E., Park, K. C., Kim, J. A. and Yeom, Y. I. (2017) Regulation of hypoxia responses by flavin adenine dinucleotide-dependent modulation of HIF-$1{\alpha}$ protein stability. EMBO J. 36, 1011-1028.   DOI
87 Yang, W., Xia, Y., Hawke, D., Li, X., Liang, J., Xing, D., Aldape, K., Hunter, T., Alfred Yung, W. K. and Lu, Z. (2012) PKM2 phosphorylates histone H3 and promotes gene transcription and tumorigenesis. Cell 150, 685-696.   DOI
88 Ying, H., Kimmelman, A. C., Lyssiotis, C. A., Hua, S., Chu, G. C., Fletcher-Sananikone, E. et al. (2012) Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 149, 656-670.   DOI
89 Yun, J., Rago, C., Cheong, I., Pagliarini, R., Angenendt, P., Rajagopalan, H., Schmidt, K., Willson, J. K., Markowitz, S., Zhou, S., Diaz, L. A., Jr., Velculescu, V. E., Lengauer, C., Kinzler, K. W., Vogelstein, B. and Papadopoulos, N. (2009) Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells. Science 325, 1555-1559.