DOI QR코드

DOI QR Code

Epigenetic Modification in Chronic Pain: A Literature Review

만성 통증과 후성유전학에 대한 문헌 고찰

  • Song, Eun-Mo (Department of Clinical Korean Medicine, Graduate School, Kyung Hee University) ;
  • Cho, Hong-Seok (Department of Clinical Korean Medicine, Graduate School, Kyung Hee University) ;
  • Kim, Koh-Woon (Department of Korean Medicine Rehabilitation, College of Korean Medicine, Kyung Hee University) ;
  • Cho, Jae-Heung (Department of Korean Medicine Rehabilitation, College of Korean Medicine, Kyung Hee University) ;
  • Park, Hi-Joon (Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University) ;
  • Song, Mi-Yeon (Department of Korean Medicine Rehabilitation, College of Korean Medicine, Kyung Hee University)
  • 송은모 (경희대학교 대학원 임상한의학교실) ;
  • 조홍석 (경희대학교 대학원 임상한의학교실) ;
  • 김고운 (경희대학교 한의과대학 한방재활의학과교실) ;
  • 조재흥 (경희대학교 한의과대학 한방재활의학과교실) ;
  • 박히준 (경희대학교 한의과대학 침구경락융합연구센터) ;
  • 송미연 (경희대학교 한의과대학 한방재활의학과교실)
  • Received : 2019.12.14
  • Accepted : 2019.12.31
  • Published : 2020.01.31

Abstract

Objectives To review the epigenetic modifications involved in chronic pain and to improve individualized intervention for the chronic pain. Methods Focused literature review. Results Significant laboratory and clinical data support that epigenetic modifications have a potential role for development of chronic pain. Conclusions Epigenetic approach may identify mechanisms critical to the development of chronic pain after injury, and may provide new pathways and target mechanisms for future treatment and individualized medicine.

Keywords

References

  1. Crofford LJ. Chronic pain: where the body meets the brain. Transactions of the American Clinical and Climatological Association. 2015;126:167-83.
  2. Woolf CJ. Pain: moving from symptom control toward mechanism-specific pharmacologic management. Annals of Internal Medicine. 2004;140(6):441-51. https://doi.org/10.7326/0003-4819-140-8-200404200-00010
  3. Bali KK, Kuner R. Noncoding RNAs: key molecules in understanding and treating pain. Trends in Molecular Medicine. 2014;20(8):437-48. https://doi.org/10.1016/j.molmed.2014.05.006
  4. Woolf CJ, Decosterd I. Implications of recent advances in the understanding of pain pathophysiology for the assessment of pain in patients. Pain. 1999;Suppl 6:S141-7.
  5. Kissin I. The development of new analgesics over the past 50 years: a lack of real breakthrough drugs. Anesthesia and Analgesia. 2010;110(3):780-9. https://doi.org/10.1213/ANE.0b013e3181cde882
  6. Javierre BM, Fernandez AF, Richter J, Al-Shahrour F, Martin-Subero JI, Rodriguez-Ubreva J, Berdasco M, Fraga MF, O'Hanlon TP, Rider LG, Jacinto FV, Lopez-Longo FJ, Dopazo J, Forn M, Peinado MA, Carreno L, Sawalha AH, Harley JB, Siebert R, Esteller M, Miller FW, Ballestar E. Changes in the pattern of DNA methylation associate with twin discordance in systemic lupus erythematosus. Genome Research. 2010;20(2):170-9. https://doi.org/10.1101/gr.100289.109
  7. Descalzi G, Ikegami D, Ushijima T, Nestler EJ, Zachariou V, Narita M. Epigenetic mechanisms of chronic pain. Trends Neurosci. 2015;38(4):237-46. https://doi.org/10.1016/j.tins.2015.02.001
  8. Wu C, Morris JR. Genes, genetics, and epigenetics: a correspondence. Science. 2001;293(5532):1103-5. https://doi.org/10.1126/science.293.5532.1103
  9. Kouzarides T. Chromatin modifications and their function. Cell. 2007;128(4):693-705. https://doi.org/10.1016/j.cell.2007.02.005
  10. Guan Z, Giustetto M, Lomvardas S, Kim JH, Miniaci MC, Schwartz JH, Thanos D, Kandel ER. Integration of long-term-memory-related synaptic plasticity involves bidirectional regulation of gene expression and chromatin structure. Cell. 2002;111(4):483-93. https://doi.org/10.1016/S0092-8674(02)01074-7
  11. Gregory PD, Wagner K, Horz W. Histone acetylation and chromatin remodeling. Experimental Cell Research. 2001;265(2):195-202. https://doi.org/10.1006/excr.2001.5187
  12. Fan S, Zhang X. CpG island methylation pattern in different human tissues and its correlation with gene expression. Biochemical and Biophysical Research Communications. 2009;383(4):421-5. https://doi.org/10.1016/j.bbrc.2009.04.023
  13. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281-97. https://doi.org/10.1016/S0092-8674(04)00045-5
  14. Loeser JD, Melzack R. Pain: an overview. Lancet. 1999;353(9164):1607-9. https://doi.org/10.1016/S0140-6736(99)01311-2
  15. Petrenko AB, Yamakura T, Baba H, Shimoji K. The role of N-methyl-D-aspartate (NMDA) receptors in pain: a review. Anesth Analg. 2003;97(4):1108-16.
  16. Sherman SM, Guillery RW. Functional organization of thalamocortical relays. J Neurophysiol. 1996;76(3):1367-95. https://doi.org/10.1152/jn.1996.76.3.1367
  17. Voisin DL, Guy N, Chalus M, Dallel R. Nociceptive stimulation activates locus coeruleus neurones projecting to the somatosensory thalamus in the rat. J Physiol. 2005;566(Pt 3):929-37. https://doi.org/10.1113/jphysiol.2005.086520
  18. Apkarian AV, Bushnell MC, Treede RD, Zubieta JK. Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain. 2005;9(4):463-84. https://doi.org/10.1016/j.ejpain.2004.11.001
  19. Heinricher MM, Tavares I, Leith JL, Lumb BM. Descending control of nociception: Specificity, recruitment and plasticity. Brain Res Rev. 2009;60(1):214-25. https://doi.org/10.1016/j.brainresrev.2008.12.009
  20. Tracey I, Mantyh PW. The cerebral signature for pain perception and its modulation. Neuron. 2007;55(3):377-91. https://doi.org/10.1016/j.neuron.2007.07.012
  21. Zhuo M, Gebhart GF. Biphasic modulation of spinal nociceptive transmission from the medullary raphe nuclei in the rat. J Neurophysiol. 1997;78(2):746-58. https://doi.org/10.1152/jn.1997.78.2.746
  22. Carlson JD, Maire JJ, Martenson ME, Heinricher MM. Sensitization of pain-modulating neurons in the rostral ventromedial medulla after peripheral nerve injury. J Neurosci. 2007;27(48):13222-31. https://doi.org/10.1523/JNEUROSCI.3715-07.2007
  23. Millan MJ. Descending control of pain. Progress in Neurobiology. 2002;66(6):355-474. https://doi.org/10.1016/S0301-0082(02)00009-6
  24. Jasmin L, Rabkin SD, Granato A, Boudah A, Ohara PT. Analgesia and hyperalgesia from GABA-mediated modulation of the cerebral cortex. Nature. 2003;424(6946):316-20. https://doi.org/10.1038/nature01808
  25. Yaksh TL. Opioid receptor systems and the endorphins: a review of their spinal organization. J Neurosurg. 1987;67(2):157-76. https://doi.org/10.3171/jns.1987.67.2.0157
  26. Woolf CJ, Salter MW. Neuronal plasticity: increasing the gain in pain. Science. 2000;288(5472):1765-9. https://doi.org/10.1126/science.288.5472.1765
  27. Gureje O, Von Korff M, Simon GE, Gater R. Persistent pain and well-being: a World Health Organization Study in Primary Care. JAMA. 1998;280(2):147-51. https://doi.org/10.1001/jama.280.2.147
  28. Muralidharan A, Smith MT. Pain, analgesia and genetics. The Journal of Pharmacy and Pharmacology. 2011;63(11):1387-400. https://doi.org/10.1111/j.2042-7158.2011.01340.x
  29. Smith MT, Muralidharan A. Pharmacogenetics of pain and analgesia. Clinical genetics. 2012;82(4):321-30. https://doi.org/10.1111/j.1399-0004.2012.01936.x
  30. Seo S, Grzenda A, Lomberk G, Ou XM, Cruciani RA, Urrutia R. Epigenetics: a promising paradigm for better understanding and managing pain. The Journal of Pain: Official Journal of the American Pain Society. 2013;14(6):549-57. https://doi.org/10.1016/j.jpain.2013.01.772
  31. Kuner R. Central mechanisms of pathological pain. Nat Med. 2010;16(11):1258-66. https://doi.org/10.1038/nm.2231
  32. Su RC, Becker AB, Kozyrskyj AL, Hayglass KT. Epigenetic regulation of established human type 1 versus type 2 cytokine responses. J Allergy Clin Immunol. 2008;121(1):57-63 e3. https://doi.org/10.1016/j.jaci.2007.09.004
  33. Riccio A. Dynamic epigenetic regulation in neurons: enzymes, stimuli and signaling pathways. Nature Neuroscience. 2010;13(11):1330-7. https://doi.org/10.1038/nn.2671
  34. Hammer P, Banck MS, Amberg R, Wang C, Petznick G, Luo S, Khrebtukova I, Schroth GP, Beyerlein P, Beutler AS. mRNA-seq with agnostic splice site discovery for nervous system transcriptomics tested in chronic pain. Genome Res. 2010;20(6):847-60. https://doi.org/10.1101/gr.101204.109
  35. Gangadharan V, Kuner R. Pain hypersensitivity mechanisms at a glance. Dis Model Mech. 2013;6(4):889-95. https://doi.org/10.1242/dmm.011502
  36. Denk F, McMahon SB. Chronic pain: emerging evidence for the involvement of epigenetics. Neuron. 2012;73(3):435-44. https://doi.org/10.1016/j.neuron.2012.01.012
  37. Besson JM. The neurobiology of pain. Lancet. 1999;353(9164):1610-5. https://doi.org/10.1016/S0140-6736(99)01313-6
  38. McCall CE, El Gazzar M, Liu T, Vachharajani V, Yoza B. Epigenetics, bioenergetics, and microRNA coordinate gene-specific reprogramming during acute systemic inflammation. Journal of Leukocyte Biology. 2011;90(3):439-46. https://doi.org/10.1189/jlb.0211075
  39. Fukuoka T, Kondo E, Dai Y, Hashimoto N, Noguchi K. Brain-derived neurotrophic factor increases in the uninjured dorsal root ganglion neurons in selective spinal nerve ligation model. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience. 2001;21(13):4891-900. https://doi.org/10.1523/jneurosci.21-13-04891.2001
  40. Bruce AW, Donaldson IJ, Wood IC, Yerbury SA, Sadowski MI, Chapman M, Gottgens B, Buckley NJ. Genome-wide analysis of repressor element 1 silencing transcription factor/neuron-restrictive silencing factor (REST/NRSF) target genes. Proc Natl Acad Sci U S A. 2004;101(28):10458-63. https://doi.org/10.1073/pnas.0401827101
  41. Uchida H, Ma L, Ueda H. Epigenetic gene silencing underlies C-fiber dysfunctions in neuropathic pain. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience. 2010;30(13):4806-14. https://doi.org/10.1523/JNEUROSCI.5541-09.2010
  42. Uchida H, Sasaki K, Ma L, Ueda H. Neuron-restrictive silencer factor causes epigenetic silencing of Kv4.3 gene after peripheral nerve injury. Neuroscience. 2010;166(1):1-4. https://doi.org/10.1016/j.neuroscience.2009.12.021
  43. Woolf CJ. Central sensitization: implications for the diagnosis and treatment of pain. Pain. 2011;152(3 Suppl):S2-15. https://doi.org/10.1016/j.pain.2010.09.030
  44. Kawasaki Y, Kohno T, Zhuang ZY, Brenner GJ, Wang H, Van Der Meer C, Befort K, Woolf CJ, Ji RR. Ionotropic and metabotropic receptors, protein kinase A, protein kinase C, and Src contribute to C-fiber-induced ERK activation and cAMP response element-binding protein phosphorylation in dorsal horn neurons, leading to central sensitization. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience. 2004;24(38):8310-21. https://doi.org/10.1523/JNEUROSCI.2396-04.2004
  45. Geranton SM, Morenilla-Palao C, Hunt SP. A role for transcriptional repressor methyl-CpG-binding protein 2 and plasticity-related gene serum- and glucocorticoid-inducible kinase 1 in the induction of inflammatory pain states. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience. 2007;27(23):6163-73. https://doi.org/10.1523/JNEUROSCI.1306-07.2007
  46. Shakespear MR, Halili MA, Irvine KM, Fairlie DP, Sweet MJ. Histone deacetylases as regulators of inflammation and immunity. Trends Immunol. 2011;32(7):335-43. https://doi.org/10.1016/j.it.2011.04.001
  47. Haettig J, Stefanko DP, Multani ML, Figueroa DX, McQuown SC, Wood MA. HDAC inhibition modulates hippocampus-dependent long-term memory for object location in a CBP-dependent manner. Learn Mem. 2011;18(2):71-9. https://doi.org/10.1101/lm.1986911
  48. Kiguchi N, Kobayashi Y, Maeda T, Fukazawa Y, Tohya K, Kimura M, Kishioka S. Epigenetic augmentation of the macrophage inflammatory protein 2/C-X-C chemokine receptor type 2 axis through histone H3 acetylation in injured peripheral nerves elicits neuropathic pain. J Pharmacol Exp Ther. 2012;340(3):577-87. https://doi.org/10.1124/jpet.111.187724
  49. Imai S, Ikegami D, Yamashita A, Shimizu T, Narita M, Niikura K, Furuya M, Kobayashi Y, Miyashita K, Okutsu D, Kato A, Nakamura A, Araki A, Omi K, Nakamura M, James Okano H, Okano H, Ando T, Takeshima H, Ushijima T, Kuzumaki N, Suzuki T. Epigenetic transcriptional activation of monocyte chemotactic protein 3 contributes to long-lasting neuropathic pain. Brain: a Journal of Neurology. 2013;136(Pt 3):828-43. https://doi.org/10.1093/brain/aws330
  50. Ito K, Barnes PJ, Adcock IM. Glucocorticoid receptor recruitment of histone deacetylase 2 inhibits interleukin-1beta-induced histone H4 acetylation on lysines 8 and 12. Mol Cell Biol. 2000;20(18):6891-903. https://doi.org/10.1128/MCB.20.18.6891-6903.2000
  51. Leoni F, Zaliani A, Bertolini G, Porro G, Pagani P, Pozzi P, Dona G, Fossati G, Sozzani S, Azam T, Bufler P, Fantuzzi G, Goncharov I, Kim SH, Pomerantz BJ, Reznikov LL, Siegmund B, Dinarello CA, Mascagni P. The antitumor histone deacetylase inhibitor suberoylanilide hydroxamic acid exhibits antiinflammatory properties via suppression of cytokines. Proc Natl Acad Sci U S A. 2002;99(5):2995-3000. https://doi.org/10.1073/pnas.052702999
  52. Chiechio S, Caricasole A, Barletta E, Storto M, Catania MV, Copani A, Vertechy M, Nicolai R, Calvani M, Melchiorri D, Nicoletti F. L-Acetylcarnitine induces analgesia by selectively up-regulating mGlu2 metabotropic glutamate receptors. Molecular Pharmacology. 2002;61(5):989-96. https://doi.org/10.1124/mol.61.5.989
  53. Chiechio S, Copani A, Zammataro M, Battaglia G, Gereau RWt, Nicoletti F. Transcriptional regulation of type-2 metabotropic glutamate receptors: an epigenetic path to novel treatments for chronic pain. Trends Pharmacol Sci. 2010;31(4):153-60. https://doi.org/10.1016/j.tips.2009.12.003
  54. Kim CS, Hwang CK, Choi HS, Song KY, Law PY, Wei LN, Loh HH. Neuron-restrictive silencer factor (NRSF) functions as a repressor in neuronal cells to regulate the mu opioid receptor gene. The Journal of Biological Chemistry. 2004;279(45):46464-73. https://doi.org/10.1074/jbc.M403633200
  55. Crow M, Denk F, McMahon SB. Genes and epigenetic processes as prospective pain targets. Genome Med. 2013;5(2):12. https://doi.org/10.1186/gm416
  56. Geranton SM, Fratto V, Tochiki KK, Hunt SP. Descending serotonergic controls regulate inflammation-induced mechanical sensitivity and methyl-CpG-binding protein 2 phosphorylation in the rat superficial dorsal horn. Molecular Pain. 2008;4:35. https://doi.org/10.1186/1744-8069-4-35
  57. Tochiki KK, Cunningham J, Hunt SP, Geranton SM. The expression of spinal methyl-CpG-binding protein 2, DNA methyltransferases and histone deacetylases is modulated in persistent pain states. Mol Pain. 2012;8:14.
  58. Tajerian M, Alvarado S, Millecamps M, Dashwood T, Anderson KM, Haglund L, Ouellet J, Szyf M, Stone LS. DNA methylation of SPARC and chronic low back pain. Mol Pain. 2011;7:65.
  59. Viet CT, Ye Y, Dang D, Lam DK, Achdjian S, Zhang J, Schmidt BL. Re-expression of the methylated EDNRB gene in oral squamous cell carcinoma attenuates cancer-induced pain. Pain. 2011;152(10):2323-32. https://doi.org/10.1016/j.pain.2011.06.025
  60. LaCroix-Fralish ML, Austin JS, Zheng FY, Levitin DJ, Mogil JS. Patterns of pain: meta-analysis of microarray studies of pain. Pain. 2011;152(8):1888-98. https://doi.org/10.1016/j.pain.2011.04.014
  61. Zhao J, Lee MC, Momin A, Cendan CM, Shepherd ST, Baker MD, Asante C, Bee L, Bethry A, Perkins JR, Nassar MA, Abrahamsen B, Dickenson A, Cobb BS, Merkenschlager M, Wood JN. Small RNAs control sodium channel expression, nociceptor excitability, and pain thresholds. J Neurosci. 2010;30(32):10860-71. https://doi.org/10.1523/JNEUROSCI.1980-10.2010
  62. Kynast KL, Russe OQ, Moser CV, Geisslinger G, Niederberger E. Modulation of central nervous system-specific microRNA-124a alters the inflammatory response in the formalin test in mice. Pain. 2013;154(3):368-76. https://doi.org/10.1016/j.pain.2012.11.010
  63. Sakai A, Suzuki H. Nerve injury-induced upregulation of miR-21 in the primary sensory neurons contributes to neuropathic pain in rats. Biochemical and Biophysical Research Communications. 2013;435(2):176-81. https://doi.org/10.1016/j.bbrc.2013.04.089
  64. Willemen HL, Huo XJ, Mao-Ying QL, Zijlstra J, Heijnen CJ, Kavelaars A. MicroRNA-124 as a novel treatment for persistent hyperalgesia. Journal of Neuroinflammation. 2012;9:143. https://doi.org/10.1186/1742-2094-9-143
  65. Fossat P, Dobremez E, Bouali-Benazzouz R, Favereaux A, Bertrand SS, Kilk K, Leger C, Cazalets JR, Langel U, Landry M, Nagy F. Knockdown of L calcium channel subtypes: differential effects in neuropathic pain. J Neurosci. 2010;30(3):1073-85. https://doi.org/10.1523/JNEUROSCI.3145-09.2010
  66. Favereaux A, Thoumine O, Bouali-Benazzouz R, Roques V, Papon MA, Salam SA, Drutel G, Leger C, Calas A, Nagy F, Landry M. Bidirectional integrative regulation of Cav1.2 calcium channel by microRNA miR-103: role in pain. The EMBO Journal. 2011;30(18):3830-41. https://doi.org/10.1038/emboj.2011.249
  67. Sakai A, Saitow F, Miyake N, Miyake K, Shimada T, Suzuki H. miR-7a alleviates the maintenance of neuropathic pain through regulation of neuronal excitability. Brain: A Journal of Neurology. 2013;136(Pt 9):2738-50. https://doi.org/10.1093/brain/awt191
  68. Chen HP, Zhou W, Kang LM, Yan H, Zhang L, Xu BH, Cai WH. Intrathecal miR-96 inhibits Nav1.3 expression and alleviates neuropathic pain in rat following chronic construction injury. Neurochemical Research. 2014;39(1):76-83. https://doi.org/10.1007/s11064-013-1192-z
  69. Baliki MN, Petre B, Torbey S, Herrmann KM, Huang L, Schnitzer TJ, Fields HL, Apkarian AV. Corticostriatal functional connectivity predicts transition to chronic back pain. Nature Neuroscience. 2012;15(8):1117-9. https://doi.org/10.1038/nn.3153
  70. Rainville P, Bushnell MC, Duncan GH. Representation of acute and persistent pain in the human CNS: potential implications for chemical intolerance. Annals of the New York Academy of Sciences. 2001;933:130-41. https://doi.org/10.1111/j.1749-6632.2001.tb05820.x
  71. Apkarian AV, Sosa Y, Sonty S, Levy RM, Harden RN, Parrish TB, Gitelman DR. Chronic back pain is associated with decreased prefrontal and thalamic gray matter density. J Neurosci. 2004;24(46):10410-5. https://doi.org/10.1523/JNEUROSCI.2541-04.2004
  72. Bushnell MC, Ceko M, Low LA. Cognitive and emotional control of pain and its disruption in chronic pain. Nature reviews Neuroscience. 2013;14(7):502-11. https://doi.org/10.1038/nrn3516
  73. Porreca F, Ossipov MH, Gebhart GF. Chronic pain and medullary descending facilitation. Trends in Neurosciences. 2002;25(6):319-25. https://doi.org/10.1016/S0166-2236(02)02157-4
  74. Zhang Z, Cai YQ, Zou F, Bie B, Pan ZZ. Epigenetic suppression of GAD65 expression mediates persistent pain. Nat Med. 2011;17(11):1448-55. https://doi.org/10.1038/nm.2442
  75. Burgess SE, Gardell LR, Ossipov MH, Malan TP Jr, Vanderah TW, Lai J, Porreca F. Time-dependent descending facilitation from the rostral ventromedial medulla maintains, but does not initiate, neuropathic pain. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience. 2002;22(12):5129-36. https://doi.org/10.1523/jneurosci.22-12-05129.2002
  76. Nasca C, Xenos D, Barone Y, Caruso A, Scaccianoce S, Matrisciano F, Battaglia G, Mathe AA, Pittaluga A, Lionetto L, Simmaco M, Nicoletti F. L-acetylcarnitine causes rapid antidepressant effects through the epigenetic induction of mGlu2 receptors. Proceedings of the National Academy of Sciences of the United States of America. 2013;110(12):4804-9. https://doi.org/10.1073/pnas.1216100110
  77. Tajerian M, Alvarado S, Millecamps M, Vachon P, Crosby C, Bushnell MC, Szyf M, Stone LS. Peripheral nerve injury is associated with chronic, reversible changes in global DNA methylation in the mouse prefrontal cortex. PloS One. 2013;8(1):e55259. https://doi.org/10.1371/journal.pone.0055259
  78. Imai S, Saeki M, Yanase M, Horiuchi H, Abe M, Narita M, Kuzumaki N, Suzuki T. Change in microRNAs associated with neuronal adaptive responses in the nucleus accumbens under neuropathic pain. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience. 2011;31(43):15294-9. https://doi.org/10.1523/JNEUROSCI.0921-11.2011
  79. Poh KW, Yeo JF, Ong WY. MicroRNA changes in the mouse prefrontal cortex after inflammatory pain. Eur J Pain. 2011;15(8):801 e1-12.
  80. Cherng CH, Lee KC, Chien CC, Chou KY, Cheng YC, Hsin ST, Lee SO, Shen CH, Tsai RY, Wong CS. Baicalin ameliorates neuropathic pain by suppressing HDAC1 expression in the spinal cord of spinal nerve ligation rats. J Formos Med Assoc. 2014;113(8):513-20. https://doi.org/10.1016/j.jfma.2013.04.007
  81. Bai G, Wei D, Zou S, Ren K, Dubner R. Inhibition of class II histone deacetylases in the spinal cord attenuates inflammatory hyperalgesia. Molecular Pain. 2010;6:51. https://doi.org/10.1186/1744-8069-6-51
  82. Ni J, Gao Y, Gong S, Guo S, Hisamitsu T, Jiang X. Regulation of mu-opioid type 1 receptors by microRNA134 in dorsal root ganglion neurons following peripheral inflammation. Eur J Pain. 2013;17(3):313-23. https://doi.org/10.1002/j.1532-2149.2012.00197.x
  83. Buchheit T, Van de Ven T, Shaw A. Epigenetics and the transition from acute to chronic pain. Pain Med. 2012;13(11):1474-90. https://doi.org/10.1111/j.1526-4637.2012.01488.x
  84. Geranton SM. Targeting epigenetic mechanisms for pain relief. Current Opinion in Pharmacology. 2012;12(1):35-41. https://doi.org/10.1016/j.coph.2011.10.012
  85. Fu SP, He SY, Xu B, Hu CJ, Lu SF, Shen WX, Huang Y, Hong H, Li Q, Wang N, Liu XL, Liang F, Zhu BM. Acupuncture promotes angiogenesis after myocardial ischemia through H3K9 acetylation regulation at VEGF gene. PloS One. 2014;9(4):e94604. https://doi.org/10.1371/journal.pone.0094604
  86. Wang JY, Li H, Ma CM, Wang JL, Lai XS, Zhou SF. MicroRNA profiling response to acupuncture therapy in spontaneously hypertensive rats. Evid Based Complement Alternat Med. 2015;2015:204367.
  87. Wang JY, Li H, Ma CM, Wang JL, Lai XS, Zhou SF. Acupuncture may exert its therapeutic effect through microRNA-339/Sirt2/NFkappaB/FOXO1 axis. BioMed Research International. 2015;2015:249013. https://doi.org/10.1155/2015/249013
  88. Wang N, Lu SF, Chen H, Wang JF, Fu SP, Hu CJ, Yang Y, Liang FR, Zhu BM. A protocol of histone modification-based mechanistic study of acupuncture in patients with stable angina pectoris. BMC Complement Altern Med. 2015;15:139. https://doi.org/10.1186/s12906-015-0653-0
  89. Hsieh HY, Chiu PH, Wang SC. Epigenetics in traditional chinese pharmacy: a bioinformatic study at pharmacopoeia scale. Evid Based Complement Alternat Med. 2011;2011:816714.
  90. Hsieh HY, Chiu PH, Wang SC. Histone modifications and traditional Chinese medicinals. BMC Complement Altern Med. 2013;13:115. https://doi.org/10.1186/1472-6882-13-115
  91. Hong M, Wang N, Tan HY, Tsao SW, Feng Y. MicroRNAs and Chinese medicinal herbs: new possibilities in cancer therapy. Cancers (Basel). 2015;7(3):1643-57. https://doi.org/10.3390/cancers7030855
  92. Zhao HL, Sui Y, Qiao CF, Yip KY, Leung RK, Tsui SK, Lee HM, Wong HK, Zhu X, Siu JJ, He L, Guan J, Liu LZ, Xu HX, Tong PC, Chan JC. Sustained antidiabetic effects of a berberine-containing Chinese herbal medicine through regulation of hepatic gene expression. Diabetes. 2012;61(4):933-43. https://doi.org/10.2337/db11-1164
  93. Zhang Y, Wang YH, Zhang XH, Ge HY, Arendt-Nielsen L, Shao JM, Yue SW. Proteomic analysis of differential proteins related to the neuropathic pain and neuroprotection in the dorsal root ganglion following its chronic compression in rats. Exp Brain Res. 2008;189(2):199-209. https://doi.org/10.1007/s00221-008-1419-4
  94. Bai L, Tian J, Zhong C, Xue T, You Y, Liu Z, Chen P, G ong Q, A i L, Q in W, Dai J , Liu Y. A cupuncture modulates temporal neural responses in wide brain networks: evidence from fMRI study. Molecular Pain. 2010;6:73. https://doi.org/10.1186/1744-8069-6-73
  95. Huang W, Pach D, Napadow V, Park K, Long X, Neumann J, Maeda Y, Nierhaus T, Liang F, Witt CM. Characterizing acupuncture stimuli using brain imaging with FMRI--a systematic review and meta-analysis of the literature. PloS One. 2012;7(4):e32960. https://doi.org/10.1371/journal.pone.0032960
  96. Gao YH, Chen SP, Wang JY, Qiao LN, Meng FY, Xu QL, Liu JL. Differential proteomics analysis of the analgesic effect of electroacupuncture intervention in the hippocampus following neuropathic pain in rats. BMC Complement Altern Med. 2012;12:241.
  97. Gao Y, Chen S , Xu Q, Yu K, Wang J , Qiao L , Meng F, Liu J. Proteomic analysis of differential proteins related to anti-nociceptive effect of electroacupuncture in the hypothalamus following neuropathic pain in rats. Neurochemical Research. 2013;38(7):1467-78. https://doi.org/10.1007/s11064-013-1047-7
  98. Sun J , Shao XM, F ang F, S hen Z, Wu YY, Fang J Q. Electroacupuncture alleviates retrieval of pain memory and its effect on phosphorylation of cAMP response element-binding protein in anterior cingulate cortex in rats. Behav Brain Funct. 2015;11:9. https://doi.org/10.1186/s12993-015-0055-y