Browse > Article
http://dx.doi.org/10.5487/TR.2017.33.1.001

Oxidative Stress, Nrf2, and Epigenetic Modification Contribute to Anticancer Drug Resistance  

Kang, Kyoung Ah (Department of Biochemistry, School of Medicine, Jeju National University)
Hyun, Jin Won (Department of Biochemistry, School of Medicine, Jeju National University)
Publication Information
Toxicological Research / v.33, no.1, 2017 , pp. 1-5 More about this Journal
Abstract
Nuclear factor E2-related factor 2 (Nrf2), a transcription factor, controls the expression of genes encoding cytoprotective proteins, including antioxidant enzymes that combat oxidative and electrophilic stress to maintain redox homeostasis. However, recent studies demonstrated that, in cancer, aberrant activation of Nrf2 by epigenetic alterations promotes high expression of cytoprotective proteins, which can decrease the efficacy of anticancer drugs used for chemotherapy. In this review, we summarize recent findings regarding the relationship between oxidative stress, Nrf2, epigenetic modification, and anticancer drug resistance, which should aid in development of new strategies to improve chemotherapeutic efficacy.
Keywords
Anticancer drug resistance; Oxidative stress; Nrf2 transcription factor; Epigenetic modification;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ramos, P. and Bentires-Alj, M. (2015) Mechanism-based cancer therapy: resistanceto therapy, therapy for resistance. Oncogene, 34, 3617-3626.   DOI
2 Gorrini, C., Harris, I.S. and Mak, T.W. (2013) Modulation of oxidative stress as an anticancer strategy. Nat. Rev. Drug Discov., 12, 931-947.   DOI
3 Trachootham, D., Alexandre, J. and Huang, P. (2009) Target-ing cancercells by ROS-mediated mechanisms: a radical therapeutic approach? Nat. Rev. Drug Discov., 8, 579-591.   DOI
4 Liu, Y., Li, Q., Zhou, L., Xie, N., Nice, E.C., Zhang, H., Huang, C. and Lei, Y. (2016) Cancer drug resistance: redox resetting renders a way. Oncotarget, 7, 42740-42761.   DOI
5 Debatin, K.M. and Krammer, P.H. (2004) Death receptors in chemotherapy and cancer. Oncogene, 23, 2950-2966.   DOI
6 Ren, D., Villeneuve, N.F., Jiang, T., Wu, T., Lau, A., Toppin, H.A. and Zhang, D.D. (2011) Brusatol enhances the efficacy of chemotherapy by inhibiting the Nrf2-mediated defense mechanism. Proc. Natl. Acad. Sci. U.S.A., 108, 1433-1438.   DOI
7 DeNicola, G.M., Karreth, F.A., Humpton, T.J., Gopinathan, A., Wei, C., Frese, K., Mangal, D., Yu, K.H., Yeo, C.J., Calhoun, E.S., Scrimieri, F., Winter, J.M., Hruban, R.H., Iacobuzio- Donahue, C., Kern, S.E., Blair, I.A. and Tuveson, D.A. (2011) Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature, 475, 106-109.   DOI
8 Zhang, Y. and Gordon, G.B. (2004) A strategy for cancer prevention: stimulation of the Nrf2-ARE signaling pathway. Mol. Cancer Ther., 3, 885-893.
9 Chio, I.I., Jafarnejad, S.M., Ponz-Sarvise, M., Park, Y., Rivera, K., Palm, W., Wilson, J., Sangar, V., Hao, Y., Ohlund, D., Wright, K., Filippini, D., Lee, E.J., Da Silva, B., Schoepfer, C., Wilkinson, J.E., Buscaglia, J.M., DeNicola, G.M., Tiriac, H., Hammell, M., Crawford, H.C., Schmidt, E.E., Thompson, C.B., Pappin, D.J., Sonenberg, N. and Tuveson, D.A. (2016) NRF2 promotes tumor maintenance by modulating mRNA translation in pancreatic cancer. Cell, 166, 963-976.   DOI
10 Giudice, A., Arra, C. and Turco, M.C. (2010) Review of molecular mechanisms involved in the activation of the Nrf2- ARE signaling pathway by chemopreventive agents. Methods Mol. Biol., 647, 37-74.
11 Sporn, M.B. and Liby, K.T. (2012) NRF2 and cancer: the good, the bad and the importance of context. Nat. Rev. Cancer, 12, 564-571.   DOI
12 Na, H.K. and Surh, Y.J. (2014) Oncogenic potential of Nrf2 and its principal target protein heme oxygenase-1. Free Radic. Biol. Med., 67, 353-365.   DOI
13 Shen, L., Song, C.X., He, C. and Zhang, Y. (2014) Mechanism and function of oxidative reversal of DNA and RNA methylation. Annu. Rev. Biochem., 83, 585-614.   DOI
14 Ito, S., Shen, L., Dai, Q., Wu, S.C., Collins, L.B., Swenberg, J.A., He, C. and Zhang, Y. (2011) Tet proteins can convert 5- methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science, 333, 1300-1303.   DOI
15 Shilatifard, A. (2008) Molecular implementation and physiological roles for histone H3 lysine 4 (H3K4) methylation. Curr. Opin. Cell Biol., 20, 341-348.   DOI
16 Coward, W.R., Feghali-Bostwick, C.A., Jenkins, G., Knox, A.J. and Pang, L. (2014) A central role for G9a and EZH2 in the epigenetic silencing of cyclooxygenase-2 in idiopathic pulmonary fibrosis. FASEB J., 28, 3183-3196.   DOI
17 Li, Z., Xu, L., Tang, N., Xu, Y., Ye, X., Shen, S., Niu, X., Lu, S. and Chen, Z. (2014) The polycomb group protein EZH2 inhibits lung cancer cell growth by repressing the transcription factor Nrf2. FEBS Lett., 588, 3000-3007.   DOI
18 Yang, D., Okamura, H., Teramachi, J. and Haneji, T. (2016) Histone demethylase Jmjd3 regulates osteoblast apoptosis through targeting anti-apoptotic protein Bcl-2 and pro-apoptotic protein Bim. Biochim. Biophys. Acta, 1863, 650-659.   DOI
19 Wang, R., An, J., Ji, F., Jiao, H., Sun, H. and Zhou, D. (2008) Hypermethylation of the Keap1 gene in human lung cancer cell lines and lung cancer tissues. Biochem. Biophys. Res. Commun., 373, 151-154.   DOI
20 Muscarella, L.A., Barbano, R., D’Angelo, V., Copetti, M., Coco, M., Balsamo, T., la Torre, A., Notarangelo, A., Troiano, M., Parisi, S., Icolaro, N., Catapano, D., Valori, V. M., Pellegrini, F., Merla, G., Carella, M., Fazio, V.M. and Parrella, P. (2011) Regulation of Keap1 expression by promoter methylation in malignant gliomas and association with patient’s outcome. Epigenetics, 6, 317-325.   DOI
21 Kang, K.A., Piao, M.J., Kim, K.C., Kang, H.K., Chang, W.Y., Park, I.C., Keum, Y.S., Surh, Y.J. and Hyun, J.W. (2014) Epigenetic modification of Nrf2 in 5-fluorouracil-resistant colon cancer cells: involvement of TET-dependent DNA demethylation. Cell Death Dis., 5, e1183.   DOI
22 Kang, K.A., Piao, M.J., Ryu, Y.S., Kang, H.K., Chang, W.Y., Keum, Y.S. and Hyun, J.W. (2016) Interaction of DNA demethylase and histone methyltransferase upregulates Nrf2 in 5-fluorouracil-resistant colon cancer cells. Oncotarget, 7, 40594-40620.   DOI
23 Mohan, M., Herz, H.M., Smith, E.R., Zhang, Y., Jackson, J., Washburn, M.P., Florens, L., Eissenberg, J.C. and Shilatifard, A. (2011) The COMPASS family of H3K4 methylases in Drosophila. Mol. Cell. Biol., 31, 4310-4318.   DOI
24 Yokoyama, A., Wang, Z., Wysocka, J., Sanyal, M., Aufiero, D.J., Kitabayashi, I., Herr, W. and Cleary, M.L. (2004) Leukemia proto-oncoprotein MLL forms a SET1-like histone methyltransferase complex with menin to regulate Hox gene expression. Mol. Cell. Biol., 24, 5639-5649.   DOI
25 Deplus, R., Delatte, B., Schwinn, M.K., Defrance, M., Méndez, J., Murphy, N., Dawson, M.A., Volkmar, M., Putmans, P., Calonne, E., Shih, A.H., Levine, R.L., Bernard, O., Mercher, T., Solary, E., Urh, M., Daniels, D.L. and Fuks, F. (2013) TET2 and TET3 regulate GlcNAcylation and H3K4 methylation through OGT and SET1/COMPASS. EMBO J., 32, 645-655.   DOI
26 Ardehali, M.B., Mei, A., Zobeck, K.L., Caron, M., Lis, J.T. and Kusch, T. (2011) Drosophila Set1 is the major histone H3 lysine 4 trimethyltransferase with role in transcription. EMBO J., 30, 2817-2828.   DOI
27 Capotosti, F., Guernier, S., Lammers, F., Waridel, P., Cai, Y., Jin, J., Conaway, J.W., Conaway, R.C. and Herr, W. (2011) OGlcNAc transferase catalyzes site-specific proteolysis of HCF-1. Cell, 144, 376-388.   DOI
28 Ding, X., Jiang, W., Zhou, P., Liu, L., Wan, X., Yuan, X., Wang, X., Chen, M., Chen, J., Yang, J., Kong, C., Li, B., Peng, C., Wong, C.C., Hou, F. and Zhang, Y. (2015) Mixed lineage leukemia 5 (MLL5) protein stability is cooperatively regulated by O-GlcNac transferase (OGT) and ubiquitin specific protease 7 (USP7). PLoS ONE, 10, e0145023.   DOI
29 Furfaro, A.L., Piras, S., Domenicotti, C., Fenoglio, D., De Luigi, A., Salmona, M., Moretta, L., Marinari, U.M., Pronzato, M.A., Traverso, N. and Nitti, M. (2016) Role of Nrf2, HO-1 and GSH in neuroblastoma cell resistance to bortezomib. PLoS ONE, 11, e0152465.   DOI
30 Bai, X., Chen, Y., Hou, X., Huang, M. and Jin, J. (2016) Emerging role of NRF2 in chemoresistance by regulating drug-metabolizing enzymes and efflux transporters. Drug Metab. Rev., 48, 541-567.   DOI
31 Holohan, C., Van Schaeybroeck, S., Longley, D.B. and Johnston, P.G. (2013) Cancer drug resistance: an evolving paradigm. Nat. Rev. Cancer, 13, 714-726.   DOI
32 Guo, Y., Yu, S., Zhang, C. and Kong, A.N. (2015) Epigenetic regulation of Keap1-Nrf2 signaling. Free Radic. Biol. Med., 88, 337-349.   DOI
33 Seton-Rogers, S. (2016) Chemotherapy: preventing competitive release. Nat. Rev. Cancer, 16, 199.