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HOTAIR is an lncRNA that has been known to have an oncogenic role in different cancers. There is limited knowledge of 
genetic and epigenetic elements and their interactions for the gene encoding HOTAIR. Therefore, understanding the 
molecular mechanism and its regulation remains to be challenging. We used different in silico analyses to find genetic and 
epigenetic elements of HOTAIR gene to gain insight into its regulation. We reported different regulatory elements including 
canonical promoters, transcription start sites, CpGIs as well as epigenetic marks that are potentially involved in the regulation 
of HOTAIR gene expression. We identified repeat sequences and single nucleotide polymorphisms that are located within or 
next to the CpGIs of HOTAIR. Our analyses may help to find potential interactions between genetic and epigenetic elements 
of HOTAIR gene in the human tissues and show opportunities and limitations for researches on HOTAIR gene in future 
studies.
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Introduction

It has been estimated that about 1.5% of human genomic 
DNA can be annotated as protein coding sequences [1]. So, 
more than 98% of the human genome does not encode 
protein [2, 3]. However, a large proportion of the genome 
transcribes non-coding RNAs such as miRNAs and long 
non-coding RNAs (lncRNAs) [4, 5]. LncRNAs have impor-
tant roles in different cellular and molecular mechanisms 
[6]. These long RNAs regulate the activity and position of 
epigenetic machinery during cell function and segregation 
[7]. In fact, some of the lncRNAs can recruit catalytic activity 
of chromatin-modifying proteins [8]. Dysregulation of 
lncRNAs has been also reported in cancer initiation and 
progression. However, the molecular mechanism and regulation 
of these RNAs have been remained to be unknown [9, 10].

Rinn et al. [11] identified HOTAIR lncRNA with a 2.2 kb 
length. HOTAIR gene is located in a region between HOX11 
and HOX12 on chromosome 12q13.3 [12-16]. HOTAIR 
lncRNA binds to both polycomb repressive complex 2 
(PRC2) and lysine specific demethylase 1 (LSD1) complexes, 
through its 5’-3’ domains and directs them to HOXD gene 

cluster as well as other genes in order to increase gene 
silencing by coupling the histone H3K27 trimethylation and 
H3K4 demethylation [17, 18]. 

HOTAIR is an oncogene RNA that is known to have 
potential role in several cancers. Its overexpression is 
reported in different solid tumors such as breast, gastric, and 
colorectal tumors [19, 20]. The oncogenic role of HOTAIR is 
reported in different mechanisms such as cell proliferation, 
invasion, aggression, and metastasis of the tumor cells as 
well as inhibition of apoptosis [3, 21-25]. In spite of different 
reports on the potential oncogenic role of HOTAIR, the 
molecular regulation of this gene needs to be revealed by 
more studies.

Since the genetic and epigenetic complexities of the 
HOTAIR locus have not been characterized yet, we aimed to 
provide an integration data to highlight different com-
positional features of HOTAIR gene. The potential model 
may help to design future studies to reveal the molecular 
mechanisms of this lncRNA. In this study, we highlighted 
and described a number of features in HOTAIR locus, which 
may be involved in regulation of this gene. The integrated 
report is derived from the in silico approaches through 
different databases and software. 
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Table 1. Softwares and databases utilized in this article

Type of analysis

Usage Software/database Reference/addressGenetic 
features

Epigenetic
features

O O Finding different 
transcripts

Ace view https://www.ncbi.nlm.nih.gov/ieb/research/acembly/
UCSC http://genome.ucsc.edu/
Ensembl http://www.ensembl.org

O - Promoter detection HMM http://genome.ucsc.edu/
Promoter scan https://www-bimas.cit.nih.gov/molbio/proscan/
Promoter 2.0 http://www.cbs.dtu.dk/services/Promoter/
Ensembl http://www.ensembl.org
Ace view https://www.ncbi.nlm.nih.gov/ieb/research/acembly/

O - Alternative transcription 
start sites

Eponine http://genome.ucsc.edu/
SwitchGear http://genome.ucsc.edu/

O - CpGIs detection UCSC http://genome.ucsc.edu/
Bona fides CGIs http://epigraph.mpi-inf.mpg.dedownloadCpG_islands revisited
CpGProD http://doua.prabi.fr/software/cpgprod
Weizmann evolutionary http://genome.ucsc.edu/ 
CGIs

O - DNase I hypersensitivity 
peak clusters

UCSC http://genome.ucsc.edu/

- O CpGIs methylation 
status 

ENCODE http://genome.ucsc.edu/

O O Gene expression 
analysis

Ace view https://www.ncbi.nlm.nih.gov/ieb/research/acembly/
GTEX RNA-SEQ http://genome.ucsc.edu/

O O Finding CTCF ENCODE http://genome.ucsc.edu
O - Finding motifs MEME http://MEME-Suite.org/

Mast program http://MEME-Suite.org/
O O Transcription factor 

binding sites
PreMode http://genomequebec.mcgill.ca/PReMod//

O - Detection of enhancers HMM http://genome.ucsc.edu/
O - Finding repeated 

sequences 
Repeat masker http://genome.ucsc.edu/
Tandem repeat by TRF http://genome.ucsc.edu/ 

O - Single nucleotide 
polymorphism

dbSNP http://genome.ucsc.edu/

- O Detection of histone 
marks

UCSC http://genome.ucsc.edu/

UCSC, University of California, Santa Cruz; HMM, Hidden Markov Model; CGI, CpG Island; ENCODE, Encyclopedia of DNA Elements; 
TRF, tandem repeat finder.

Methods 

Different databases and bioinformatics software were 
used. Then, the data were reanalyzed and integrated in order 
to provide a potential model for describing the genetic and 
epigenetic features of the HOTAIR locus. Table 1 shows list of 
the in silico tools used in this study and the methodology is 
represented as a flowchart (Fig. 1). In our analyses, the 
desired sequence was mostly defined as a sequence that 
spans from 2 kb upstream of annotated transcription start 
site (TSS) of HOTAIR to the end of the gene. The selection 
was based on the previous studies defining putative 
promoter regions from −2 kb to +1 kb of the TSS [26]. 
Some data were analyzed through Encyclopedia of DNA 

Elements (ENCODE) project cited in University of 
California, Santa Cruz (UCSC) genome browser. Encode is a 
genome-wide consortium project with the aim of cataloging 
all functional elements in the human genome through related 
experimental conditions. In addition, all of the software was 
run with default parameters and criteria. The description of 
each software and database as well as their criteria of the 
analyses are described in below. 
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Fig. 3. Integrated regulatory elements
of HOTAIR gene structure. The sche-
matic diagram shows a summary of 
results from different databases and 
software which are described in the 
text.

Fig. 2. Transcript variants of HOTAIR
gene derived from the GENCODE, 
Ensemble and Refseq.

Fig. 1. The flowchart of the methods 
used in the study. TSS, transcription 
start site; SNP, single nucleotide poly-
morphism.
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Fig. 4. CpG Islands in the HOTAIR
gene. The data are derived from data-
bases and prediction software. CGI, 
CpG Island.

Results
HOTAIR gene is transcribed into different RNA 
isoforms by alternative compositional features

According to the Ace view database, 11 distinct GT-AG 
introns are identified in the HOTAIR gene. This results in 
seven different transcripts, six of which are created through 
alternative splicing (https://www.ncbi.nlm.nih.gov/ieb/ 
research/acembly/). Different variants were found in 
GENECODE V22 and Ensembl. According to the Refseq, 
there are three transcript variants for this gene (NR_ 
047518.1, NR_047517.1 and NR_003716.3) (Fig. 2).

Since it seems that alternative transcripts of HOTAIR are 
due to alternative promoters, TSSs, alternative polyadeny-
lation sites, and alternative splicing, we tried to find different 
promoters, TSSs, polyadenylation, and splice sites in the 
HOTAIR gene. 

We found alternative promoters and polyadenylation sites 
in the HOTAIR locus (https://www.ncbi.nlm.nih.gov/ieb/ 
research/acembly/). According to the Ensembl, there are 
two active promoters in this gene (Fig. 3). Also, Chromatin 
state segmentation using Hidden Markov Model (HMM) 
[27] identified these two active promoters as well as 
enhancers in the HOTAIR gene in some cell lines. The HMM 
is a probabilistic model representing probability distri-
butions over sequences of observations. Supplementary 
Table 1 which is based on UCSC hg19, shows the positions 
of the active promoters of HOTAIR locus in Ensemble and 
HMM. 

Promoter prediction with different tools recognized 
alternative promoters throughout this gene. Promoter scan 
program was run with the default promoter cutoff score. 
This program predicts promoters based on the degree of 

homologies with eukaryotic RNA pol II promoter sequences 
(https://www-bimas.cit.nih.gov/molbio/proscan/) [28]. 
Different TSSs were also found in the HOTAIR gene by 
different programs and software including Eponine, 
Switchgear, and Promoter 2 [29]. The Eponine program 
provides a probabilistic method for detecting TSSs. The 
Switchgear algorithm uses a scoring metric based largely on 
existing transcript evidence. Promoter2 takes advantage of a 
combination of principles that are common to neural 
networks and genetic algorithms. The positions of found 
TSSs compared to other features are shown in the Supp-
lementary Table 1. 

CpG islands were found to be overlapped with 
active promoters and DNase I hypersensitivity sites

According to the UCSC browser, bona fide CpGIs, 
Weizmann Evolutionary, and CpG ProD program, there were 
different CpG Islands (CGIs) in the HOTAIR gene. These 
CpGIs are shown in the Fig. 4. UCSC genome browser 
identifies CGIs of human genome based on the regions of 
DNA with average (G+C) content greater than 50%, length 
greater than 200 bp and a moving average CpG O/E greater 
than 0.6 [30, 31]. “Bona fide” identifies functional CpGIs by 
linking genetic and epigenetic information [32]. Weizmann 
evolutionary (WE) predicts highly conserved CGIs through 
their classification of evolutionary dynamics (http://genome. 
ucsc.edu/) [33]. “CpG ProD” program identifies CpGIs-ov-
erlapping with promoters in the large genomic regions under 
analysis and shows these CpGIs with length longer than 
other CpGIs [34]. Then, we tried to find any overlap between 
CpGIs and other regulatory elements. Two TSSs (CHR-
12-P0397-R1, CHR12-P0397-R2) were found within CpG165 
(annotated in UCSC genome browser) and 1437 (derived 
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Table 2. The positions of regulatory sequences which are near or within CpG165 of HOTAIR

Position of 
CpG165

Promoter 
(active) Other CpGIs Tandem repeat 

(strand+) CTCF Strong enhancer DNase I 
hypersensitivity

Module and 
TSSs

CpG165: 543-
66816-543691
03

HSMM cells: 
54365934-54
370733

Bona fide 
1437: 
54366623-54
367999

(GGCGGA)n: 
54367601-54
367637

54366799- 
54367314

NHEK cells: 
4 strong 
enhancers: 
54365934-54
367133

41: 54366785- 
54367814

025610: 
54366634-54
366977 

NHEK cells: 
54367139-54
369133 

CpG2 (WE): 
54366684-54
366909

(GGGA)n: 
54367731-54
367801

NHEK cells 
DNase I hots-
pot: 75095: 
54366045-54
370999

025613: 
54367707-54
368584

First active 
promoter 
based on 
ensembl: 
54365691-54
370092

CpG1 
(CpGProD): 
54366456-54
368740 

GAGGGAGG
GAGCGAGA: 
54367742-54
367783

TSSs: 
CHR12-P039
7-R1: 
54366912-54
366912

　 CpG2.4 (WE): 
54368334-54
368964

　 　 CHR12-P0397-
R2: 54367584-
54367584

Bona fide 
1438: 
54368166-54
369840

Positions are based on UCSC hg19.
TSS, transcription start site; WE, Weizmann evolutionary.

from bona fide CGIs). The CpGIs were mostly overlapped 
with the active promoter regions (Fig. 3, Supplementary 
Table 1). We focused on CpG165 and found some regulatory 
elements which are within or near to this CpG (Table 2).

In addition, several DNase I hypersensitivity hotspots 
were found to be overlapped with CpGIs in some cell lines 
(Supplementary Table 1). We found the DNase I hyper-
sensitivity peak clusters of HOTAIR gene in 95 cells with 
score greater than 0.6 by using UCSC genome browser. 
DNase I hypersensitivity peak cluster 19 is located within 
CpG1433 and mostly overlaps with CpG18. Also, DNase I 
hypersensitivity peak cluster 41 is located within CpG1437 
and mostly overlaps with CpG165 and partially overlaps 
with CpG2 (WE) (Fig. 3, Supplementary Table 1). 

Furthermore, we detected specific CpG dinucleotides 
methylation status within or near the predicted CpGIs in 
some cell lines by using ENCODE (Supplementary Table 2). 
This track identifies specific CpG dinucleotides methylation 
status by Infinium human methylation 450 bead array 
platform and classifies the methylation status into four 
groups: (1) not available (score = 0), (2) unmethylated (0 ＜ 

score ≤ 200), (3) partially methylated (200 ＜ score ＜ 600), 
and (4) methylated (score ≥ 600) (http://genome.ucsc.edu/).

CTCF and transcription factor binding sites are 
overlapped with CpGIs and TSSs

GTEx RNA-seq strategy indicates that HOTAIR has 
variable expression in different tissues and its most 
expression level is in the artery-tibial tissue (data not 
shown). We found two putative regions for CTCF binding 
sites in the HOTAIR locus by ENCODE with factorbook 
motifs, one of which is located within CpG1437 (bona fide 
CpGIs) and mostly overlaps with CpG165 (Table 2, Fig. 3). 
This track determines regions of transcription factor binding 
sites taken from a comprehensive chip-seq experiments 
identified by ENCODE and factorbook pool (http://genome. 
ucsc.edu/). We predicted sequences of motifs and positions 
of these motifs in the HOTAIR locus by using MEME and 
MAST programs (Supplementary Table 3). MEME program 
searches the motifs from downloaded sequences through 
using complementary strengths of probabilistic and discrete 
models (http://MEME-Suite.org/) [35, 36]. The program 
was run with default parameters and normal mode of motif 
discovery. Mast program searches specific sequences based 
on predicted motifs by MEME program and exactly matches 
these sequences with the motifs sequences (http:// 
MEME-Suite.org/) [37].

We found nine sequences of modules depending on their 
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transcription factor binding sites in the HOTAIR locus by 
PReMode program [38, 39]. We observed some of these 
elements overlapped with the predicted CpGIs and TSSs 
(Fig. 3, Supplementary Table 1). In addition, we determined 
that some of these modules have common transcription 
factors (data not shown). 

Some polymorphisms such as tandem repeats exist 
within the regulatory elements

Repeat Masker found several repeats sequences overla-
pped with regulatory elements of the HOTAIR locus such as 
CpGIs (Fig. 3, Supplementary Table 1) and motifs (Supple-
mentary Table 3). Repeat master investigates query sequences 
and generates a detailed annotation of available repeats in 
these sequences and shows dispersed repeats and low 
complexity DNA sequences (http://genome.ucsc.edu/). In 
addition, tandem repeat finder, which analyzes simple 
tandem repeats, predicted one simple tandem repeat 
(GAGGGAGGGAGCGAGA) within this gene (Supplementary 
Table 1) (http://genome.ucsc.edu/) [40]. In addition, we 
found some simple nucleotide polymorphisms within re-
gulatory sequences of HOTAIR gene (Supplementary Table 4). 

Discussion 

Studies have shown that aberrant epigenetic modifi-
cations including aberrant DNA methylation and histone 
modification are significantly involved in the dysregulation 
of genes with their potential roles in cancers [41]. However, 
identification of the exact elements of HOTAIR as well as 
their interaction has not been discovered yet. This study was 
aimed to find and highlight different regulatory elements by 
data integration. We identified putative regulatory elements 
that contribute to the regulation of HOTAIR expression by in 
silico analyses. Identification of these elements suggests new 
understanding of HOTAIR expression and might help to 
design future studies on this lncRNA which has oncogenic 
role in different cancers [42-45]. 

First, we tried to show different isoforms of HOTAIR RNA 
transcribed through alternative mechanisms. Since a recent 
study suggested the important role of HOTAIR domains in its 
function [46], we propose studying the molecular roles of 
different RNA isoforms in future researches. Then, in order 
to find alternative and potential features involved in 
generation of RNA isoforms, we checked the putative TSSs, 
promoters, and polyadenylation sites. We found different 
features, which are potentially involved in alternative 
transcription of HOTAIR gene. 

Considering the potential involvement of methylation 
beyond CGI-promoters in human cancer, we focused on 
potential CGIs of HOTAIR. According to the fact that 

function of DNA methylation seems to be varied with 
context, we tried to find any relation between the CGIs and 
other compositional features such as TSSs, promoters, 
enhancers, DNase I hypersensitivity sites, and CTCF binding 
sites. Alterations in DNA methylation are known to coo-
perate with genetic elements and to be involved in human 
carcinogenesis. The results showed different CpGIs in the 
HOTAIR locus and determined their epigenetic status 
through integration analysis. The methylation status of 
these CGIs needs to be revealed in future researches. The 
methylation analysis will be so important because we 
currently know that most CGIs located in TSSs are not 
methylated. However, CGI methylation of the TSS is 
associated with long-term silencing. In addition, CGIs in 
gene bodies are sometimes methylated in a tissue-specific 
manner [47]. It has been reported that methylation of a 
CTCF-binding site may block the binding of CTCF. 
Altogether, different CpGIs overlapped with genetic elements 
seem to have important roles in controlling HOTAIR.

Some repeat sequences and single nucleotide polymor-
phisms exist within or next to the predicted CpGIs. We think 
that repeat number variations may effect on methylation 
status of regulatory regions of HOTAIR gene. Different 
studies reported some associations between polymorphisms 
of HOTAIR and cancers risks. The examples are the asso-
ciation between rs920778 [48], rs4759314 [49], and 
rs12826786 [25] and gastric cancer, rs7958904 and colore-
ctal cancer [50], rs920788 and breast cancer [51], rs4759314 
and rs7958904 in epithelial ovarian cancer [52]. We found 
that some SNPs are located within regulatory regions and so 
may effect on the gene expression. Also, since the repeat 
sequences of HOTAIR gene might contribute to the methy-
lation status of regulatory regions, we highlighted the 
overlaps between these sequences and the predicted CpGIs.

Due to the overlap with active promoter, strong enhancer, 
CTCF binding site, DNase I hypersensitive sites, SNPs, and 
repeat sequences, CpG165 seems to be more important 
compared to other CpGIs for generation of the long RNA 
isoform. However, according to the Fig. 3, considering the 
overlap with other structural features, other CpGIs within 
the gene structure also seems to be involved in gene 
regulation. This integration model should be checked and 
validated in future experimental works. 

Altogether, it seems that alternative transcripts of HOTAIR 
originate from interactions between genetic and epigenetic 
elements. Our data provide strong evidence based on the 
databases and in silico prediction that specific sequence 
motifs may potentially be involved in DNA methylation 
states of various set of CGIs in different tissues including 
normal and tumors. Our study suggests that the combi-
natorial binding of specific transcription factors plays a 



176 www.genominfo.org

M Hajjari and S Rahnama. Characterizing the HOTAIR Locus

major role in regulation of HOTAIR expression. Future work 
that aims to provide detailed maps of epigenome in normal 
and diseased states is crucial to our understanding of 
HOTAIR role in cancer pathogenesis. 

ORCID: Mohammadreza Hajjari: http://orcid.org/0000-
0003-3838-0259; Saghar Rahnama: http://orcid.org/0000-
0002-2068-5436
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