• 제목/요약/키워드: Environmentally friendly Materials

검색결과 403건 처리시간 0.029초

대형삼축시험 장비를 이용한 조립재료의 전단강도 특성 (Characteristics of shear strength of coarse-grained materials using large triaxial test equipment)

  • 김광일;신동훈;임은상;김기영
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.1017-1024
    • /
    • 2009
  • In the past few decades, the rockfill embankment dam, which has superior workability and economy, has become a major trend. In Korea, most of the embankment dams are rockfill dams, but recently, in response to the demand for sustainable development and environmentally-friendly water resource development, the sand and gravel in streams has become a major construction material for dams, rather than the non-economic rockfill, and its application examples have also increased. In this study, a large triaxial test was performed, with construction samples of different maximum sizes, in parallel with the grading method at the 'B Dam' construction site in Korea, and the effects of the different maximum sizes on the strain of the dam construction material and on the shear strength characteristics were analyzed to provide the basic data for determining the strength characteristics of the coarse-grained materials by the maximum size.

  • PDF

Formation of Cerium Conversion Coatings on AZ31 Magnesium Alloy

  • Fazal, Basit Raza;Moon, Sungmo
    • 한국표면공학회지
    • /
    • 제49권1호
    • /
    • pp.1-13
    • /
    • 2016
  • This review deals with one of the surface modification techniques, chemical conversion coating and particularly cerium-based conversion coatings (CeCC) as a promising substitute for chromium and phosphate conversion coating on magnesium and its alloys. The CeCCs are commonly considered environmentally friendly. The effects of surface preparation, coating thickness, bath composition, and e-paint on the corrosion behavior of CeCCs have been studied on the AZ31 magnesium alloy. This review also correlates the coating microstructural, morphological, and chemical characteristics with the processing parameters and corrosion protection. Results showed that the as-deposited coating system consists of a three layer structure (1) a nanocrystalline MgO transition layer in contact with the Mg substrate, (2) a nanocrystalline CeCC layer, and (3) an outer amorphous CeCC layer. The nanocrystalline CeCC layer thickness is a function of immersion time and cerium salt used. The overall corrosion protection was crucially dependent on the presence of coating defects. The corrosion resistance of AZ31 magnesium alloy was better for thinner CeCCs, which can be explained by the presence of fewer and smaller cracks. On the other hand, maximum corrosion protection was achieved when AZ31 magnesium samples with thin CeCCs are e-painted. The e-paint layer further restricts and hinders the movement of chloride and other aggressive ions present in the environment from reaching the magnesium surface.

바이오 합성법으로 제조된 ZnO 나노입자의 구조 분석 및 항박테리아 거동 (Biosynthesis of Zinc Oxide Nanoparticles and Structural Characterization and Antibacterial Performance)

  • ;송재숙;홍순익
    • 한국재료학회지
    • /
    • 제30권5호
    • /
    • pp.252-261
    • /
    • 2020
  • We prepare ZnO nanoparticles by environmentally friendly synthesis using Cyathea nilgiriensis leaf extract. Various phytochemical constituents are identified through the assessment of ethanolic extract of plant Cyathea nilgiriensis holttum by GC-MS analysis. The formation of ZnO nanoparticles is confirmed by FT-IR, XRD, SEM-EDX, TEM, SAED and PSA analysis. TEM observation reveals that the biosynthesized ZnO nanopowder has a hexagonal structure. The calculated average crystallite size from the high intense plane of (1 0 1) is 29.11 nm. The particle size, determined by TEM analysis, is in good agreement with that obtained by XRD analysis. We confirm the formation of biomolecules in plant extract by FT-IR analysis and propose a possible formation mechanism of ZnO nanoparticles. Disc diffusion method is used for the analyses of antimicrobial activity of ZnO nanoparticles. The synthesized ZnO nanoparticles exhibit antimicrobial effect in disc diffusion experiments. The biosynthesized ZnO nanoparticles display good antibacterial performance against B. subtilis (Gram-positive bacteria) and K. pneumonia (Gram-negative bacteria). Bio-synthesized nanoparticles using green method are found to possess good antimicrobial performance.

Characteristic Analysis of a Linear Induction Motor for 200-km/h Maglev

  • Jeong, Jae-Hoon;Lim, Jae-Won;Park, Do-Young;Choi, Jang-Young;Jang, Seok-Myeong
    • International Journal of Railway
    • /
    • 제8권1호
    • /
    • pp.15-20
    • /
    • 2015
  • As a result of the current population concentrations in urban centers, demand for intercity transportation is increasing rapidly. Railway transportation is becoming popular as an intercity transportation because of its timely service, travel speeds and transport efficiency. Among the many railway systems, the innovative and environmentally friendly maglev system has been rated very highly as the next-generation intercity railway system. Linear induction motors are widely used for the propulsion of maglev trains because of their light weight and low construction costs. The urban maglev that was recently completed in Incheon airport site employs a 110km/h class linear induction motor. However, this system was designed to meet requirements for inner-city operations and is not suitable as an intercity transportation system, which requires medium to high speeds. Therefore, this study deals with the characteristics and designs of linear induction motors used for the propulsion of maglev trains that can be used as intercity trains. Rail car specifications for high-speed trains have been presented, and the characteristics of linear induction motors that can be used for the propulsion of these trains have been derived using the finite element method (FEM).

Dynamic Mechanical Properties of Natural Fiber/Polymer Biocomposites: The Effect of Fiber Treatment with Electron Beam

  • Han, Young-Hee;Han, Seong-Ok;Cho, Dong-Hwan;Kim, Hyung-Il
    • Macromolecular Research
    • /
    • 제16권3호
    • /
    • pp.253-260
    • /
    • 2008
  • Environmentally friendly biocomposites were made using plant-based natural fibers, such as henequen and kenaf. The natural fiber reinforced polypropylene (PP) and unsaturated polyester (UP) biocomposites were examined in terms of the reinforcing effect of natural fibers on thermoplastic and thermosetting polymers. Kenaf (KE) and henequen (HQ) fibers were treated with an electron beam (EB) of 10 and 200 kGy doses, respectively, or with a 5 wt% NaOH solution. Four types of biocomposites (KE/PP, HQ/PP, KE/UP and HQ/UP) were fabricated by compression molding and each biocomposite was characterized by dynamic mechanical analysis and thermogravimetric analysis. The kenaf fiber had the larger reinforcing effect on the dynamic mechanical properties of both PP and UP biocomposites than the henequen fiber. The highest storage modulus was obtained from the biocomposite with the combination of UP matrix and 200 kGy EB treated kenaf fibers.

Graft Polymer를 이용한 수계 세라믹 잉크의 합성 및 프린팅 특성평가 (Synthesis and Printability of Aqueous Ceramic Ink with Graft Polymer)

  • 이지현;황해진;김진호;황광택;한규성
    • 한국재료학회지
    • /
    • 제29권10호
    • /
    • pp.639-646
    • /
    • 2019
  • Ink-jet printing is a manufacturing process technology that directly prints a digitalized design pattern onto a substrate using a fine ink jetting system. In this study, environmentally friendly yellow aqueous ceramic ink is synthesized by mixture of distilled water, yellow ceramic pigment and additives for ink-jet printing. The graft polymer, which combines electrostatic repulsion and steric hindrance mechanism, is used as a surfactant for dispersion stability of aqueous ceramic ink. Synthesized ceramic ink with graft polymer surfactant shows better dispersion stability than did ceramic ink with PAA surfactant; synthesized ink also shows desirable ink-jet printability with the formation of a single ink droplet during printability test. Finally, ceramic ink printed on glass substrate and ceramic ink with graft polymer surfactant shows a high contact angle without surface treatment on glass substrate. Consequently, it is confirmed that the ceramic ink with graft polymer surfactant can achieve high printing resolution without additional surface treatment process.

Facile Electrodeposition Technique for the Fabrication of MoP Cathode for Supercapacitor Application

  • Samanta, Prakas;Ghosh, Souvik;Murmu, Naresh Chandra;Lee, Joong Hee;Kuila, Tapas
    • Composites Research
    • /
    • 제34권6호
    • /
    • pp.345-349
    • /
    • 2021
  • The continued environmental pollution caused by fossil fuel consumption has prompted researchers around the world to develop environmentally friendly energy technologies. Electrochemical energy storage is the significant area of research in this development process, and the research significance of supercapacitors in this field is increasing. Herein, a simple electrodeposition synthetic route was explored to develop the MoP layered cathode material. The layered structure provided a highly ion-accessible surface for smooth and faster ion adsorption/desorption. After Fe was doped into MoP, the morphology of MoP changes and the electrochemical performance was significantly improved. Specific capacitance value of the binder-free FeMoP electrode was found to be 269 F g-1 at 2 A g-1 current density in 6 M aqueous KOH electrolyte. After adding Fe to MoP, an additional redox contribution was observed in the redox conversion from Fe3+ to Fe2+ redox pair, and the charge transfer kinetics of MoP was effectively improved. This research can provide guidance for the development of supercapacitor electrode materials through simple electrodeposition technology.

Hydrophobicity in nanocatalysis

  • Alimoradlu, Khadijeh;Zamani, Asghar
    • Advances in nano research
    • /
    • 제12권1호
    • /
    • pp.49-63
    • /
    • 2022
  • Nanocatalysts are usually used in the synthesis of petrochemical products, fine chemicals, biofuel production, and automotive exhaust catalysis. Due to high activity and stability, recyclability, and cost-effectiveness, nanocatalysts are a key area in green chemistry. On the other hand, water as a common by-product or undesired element in a range of nanocatalyzed processes may be promoting the deactivation of catalytic systems. The advancement in the field of hydrophobicity in nanocatalysis could relatively solves these problems and improves the efficiency and recyclability of nanocatalysts. Some recent developments in the synthesis of novel nanocatalysts with tunable hydrophilic-hydrophobic character have been reviewed in this article and followed by highlighting their use in catalyzing several processes such as glycerolysis, Fenton, oxidation, reduction, ketalization, and hydrodesulfurization. Zeolites, carbon materials, modified silicas, surfactant-ligands, and polymers are the basic components in the controlling hydrophobicity of new nanocatalysts. Various characterization methods such as N2 adsorption-desorption, scanning and transmission electron microscopy, and contact angle measurement are critical in the understanding of hydrophobicity of materials. Also, in this review, it has been shown that how the hydrophobicity of nanocatalyst is affected by its structure, textural properties, and surface acidity, and discuss the important factors in designing catalysts with high efficiency and recyclability. It is useful for chemists and chemical engineers who are concerned with designing novel types of nanocatalysts with high activity and recyclability for environmentally friendly applications.

폐스티로폼과 조강시멘트를 혼입한 경량기포콘크리트의 특성 (Properties of Lightweight Foamed Concrete with Waste Styrofoam and Crude Steel Cement)

  • 박채울;이상수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2020년도 봄 학술논문 발표대회
    • /
    • pp.77-78
    • /
    • 2020
  • In Korea, more than 30,000 tons of waste Styrofoam are produced every year. Styrofoam is spent more than 500 years decomposing during the reclamation process, so it needs to be recycled. The recycling rate of waste styrofoam continues to be the third highest in the world, but it is lower than that of Germany and Japan. Therefore, measures are needed to increase the recycling rate of waste Styropol. Another problem is that cement is mainly used in existing lightweight foam concrete. However, large amounts of CO2 from cement-producing processes cause environmental pollution. Currently, Korea is increasing its greenhouse gas reduction targets to cope with energy depletion and climate change, and accelerating efforts to identify and implement reduction measures for each sector. In 2013 alone, about 600 million tons of carbon dioxide was generated in the cement industry. Therefore, this study replaces CO2 generation cement with furnace slag fine powder, uses crude steel cement for initial strength development of bubble concrete, and manufactures hardening materials to study its properties using waste styrofoam. As a result of the experiment, the hardening agent replaced by micro powder of furnace slag was less intense and more prone to absorption than cement using ordinary cement. Further experiments on the segmentation and strength replenishment of furnace slag are believed to contribute to the manufacture of environmentally friendly lightweight foam concrete.

  • PDF

관거 및 지하구조물 균열 보수에 사용되는 아크릴 누수 보수재의 적용성에 대한 연구 (A Study on the Applicability of Acrylic Water Leak Repair Materials used to Repair Cracks in Conduits and Underground Structures)

  • 이은미;길경익
    • 한국습지학회지
    • /
    • 제26권2호
    • /
    • pp.139-146
    • /
    • 2024
  • 노후된 관거 및 지하구조물의 균열 보수에 아스팔트계 주입재, 우레탄계 주입재, 시멘트계 주입재, 아크릴계 주입재 등 다양한 주입재가 사용되고 있다. 친환경적이고 습윤상태에서 경화가 잘되고 온도변화에 안정적인 물성을 갖는 아크릴계 누수 보수재에 대하여 연구하였다. 개량된 아크릴 누수 보수재와 기존 아크릴레이트 주입재의 성능 비교를 위하여 KS 규격의 실험방법에 준용하여 수중침지 길이변화율 시험, 수중 유실 저항성 시험, 내화학 성능시험을 실시하였다. 비교 실험해 본 결과 개량된 아크릴 누수 보수재는 기존 아크릴레이트 주입재보다 습윤상태, 온도변화, 화학적 반응에 따른 수축변화가 없었고 수중 저항성 실험에서 유실되지 않았다. 또한, 개량된 아크릴 누수 보수재의 환경적 영향성을 알아보기 위해 어류급성독성 실험과 급성경구독성 실험을 진행하여 관찰해 본 결과 실험체의 사망률이 없었고 특별한 유의점이 발견되지 않았다. 본 연구의 실험결과 개량된 아크릴 누수 보수재가 성능적으로 우수하고 환경적으로 안전하고 인체에 무해하다고 판단되었다. 본 연구의 다양한 실험결과 기존의 아크릴레이트 보수재보다 개량된 아크릴 누수 보수재가 관거 및 지하구조물 균열 부위의 보수재로 사용되기 적합하다고 사료된다. 본 연구는 아크릴 누수 보수재에 대한 적용성 평가에 대한 연구로 향후 기술 개발에 활용자료로 제안하고자 한다.