Browse > Article
http://dx.doi.org/10.3740/MRSK.2020.30.5.252

Biosynthesis of Zinc Oxide Nanoparticles and Structural Characterization and Antibacterial Performance  

Suresh, Joghee (Department of Chemistry, Sri Ramakrishna Engineering College)
Song, Jae Sook (Department of Nanomaterials Engineering, Chungnam National University)
Hong, Sun Ig (Department of Nanomaterials Engineering, Chungnam National University)
Publication Information
Korean Journal of Materials Research / v.30, no.5, 2020 , pp. 252-261 More about this Journal
Abstract
We prepare ZnO nanoparticles by environmentally friendly synthesis using Cyathea nilgiriensis leaf extract. Various phytochemical constituents are identified through the assessment of ethanolic extract of plant Cyathea nilgiriensis holttum by GC-MS analysis. The formation of ZnO nanoparticles is confirmed by FT-IR, XRD, SEM-EDX, TEM, SAED and PSA analysis. TEM observation reveals that the biosynthesized ZnO nanopowder has a hexagonal structure. The calculated average crystallite size from the high intense plane of (1 0 1) is 29.11 nm. The particle size, determined by TEM analysis, is in good agreement with that obtained by XRD analysis. We confirm the formation of biomolecules in plant extract by FT-IR analysis and propose a possible formation mechanism of ZnO nanoparticles. Disc diffusion method is used for the analyses of antimicrobial activity of ZnO nanoparticles. The synthesized ZnO nanoparticles exhibit antimicrobial effect in disc diffusion experiments. The biosynthesized ZnO nanoparticles display good antibacterial performance against B. subtilis (Gram-positive bacteria) and K. pneumonia (Gram-negative bacteria). Bio-synthesized nanoparticles using green method are found to possess good antimicrobial performance.
Keywords
green chemistry; ZnO nanoparticles; biosynthesis; nanostructure; antibacterial performance;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 S. Iravani, Green Chem., 13, 2638 (2011).   DOI
2 R. Yuvakkumar, J. S. Song, P. W. Shin and S. I. Hong, Korean J. Mater. Res., 26, 311 (2016).   DOI
3 R. Yuvakkumar, J. S. Song and S. I. Hong, Korean J. Mater. Res., 28, 24 (2018).   DOI
4 C. R. Fraser-Jenkins, Taiwania, 53, 264 (2008).
5 K. S. Walter and H. J. Gillett, IUCN Red List of Threatened Plants: Compiled by the World Conservation Monitoring Centre, lUCN-The World Conservation Union, Gland, Switzerland and Cambridge, UK (1998).
6 P. K. Rajagopal and K. G. Bhat, India Ind. Fern J., 15, 1 (1998).
7 H. B. Singh, J. Econ. Tax. Bot., 33, 63 (1999).
8 S. D. Rout, Int. J. Med. Medi. Sci., 1, 192 (2009).
9 L. V. Asolkar, K. K. Kakkar and O. J. Chakre, Second Supplement to Glossary of Indian Medicinal Plants with Active Principles, CSIR, New Delhi (1992).
10 M. Kumar, Ind. Fern J., 20, 1 (2003).
11 D. Sharma, J. Rajput, B. S. Kaith, M. Kaur and S. Sharma, Thin Solid Films, 519, 1224 (2010).   DOI
12 V. Lakshmi Prasanna and R. Vijayaraghavan, Langmuir, 31, 9155 (2015).   DOI
13 T. Antoine, Y. K. Mishra, J. Trigilio, V. Tiwari, R. Adelung and D. Shukla, Antiviral Res., 96, 363 (2012).   DOI
14 A. K. Barui, V. Veeriah, S. Mukherjee, J. Manna, A. K. Patel, S. Patra, K. Pal, S. Murali, R. K. Rana, S. Chatterjee and C. R. Patra, Nanoscale, 4, 7861 (2012).   DOI
15 M. Sanjappa and P. Lakshminarasimhan, Sci. Cult., 77, 62 (2011).
16 M. Sundrarajan, S. Ambika and K. Bharathi, Adv. Powder Technol., 26, 1294 (2015).   DOI
17 T. R. Lakshmeesha, M. K. Sateesh, B. D. Prasad, S. C. Sharma, D. Kavyashree, M. Chandrasekhar and H. Nagabhushana, Cryst. Growth Des., 14, 4068 (2014).   DOI
18 S. Gunalan, R. Sivaraj and V. Rajendran, Prog. Nat. Sci. Mater. Int., 22, 693 (2012).   DOI
19 S. Ambika and M. Sundrarajan, J. Photochem. Photobiol., B, 149, 143 (2015).   DOI
20 D. K. Runyoro, M. I. Matee and O. D. Ngassapa, BMC Complementary Alternative Med., 6, 11 (2006).   DOI
21 F. Nazzaro, F. Fratianni, L. De Martino, R. Coppola and V. De Feo, Pharmaceuticals, 6, 1451 (2013).   DOI
22 V. Rajesh, J. Sophiya, S. Jacob, P. Justin, P. Arumugam and P. Jayaraman, J. Bionanosci., 11, 24 (2017).   DOI
23 R. Devi, A. Phukan, E. Saikia and B. Chetia, J. Bionanosci., 8, 28 (2014).   DOI
24 H. Kim and K. Yong, ACS Appl. Mater. Interfaces, 5, 13258 (2013).   DOI
25 N. Janakiraman and M. A. Johnson, Pharmaceut. J., 15, 43 (2016).
26 D. Gnanasangeetha and S. D. Thambavani, Int. J. Pharm. Sci. Res., 5, 2866 (2014).
27 R. Yuvakkumar, J. Suresh, A. J. Nathanael, M. Sundrarajan and S. I. Hong, Mater. Sci. Eng., C, 41, 17 (2014).   DOI
28 S. Yedurkar, C. Maurya and P. Mahanwar, Open J. Synth. Theory Appl., 5, 1 (2016).   DOI
29 S. Raut, P. V. Thorat and R. Thakre, Int. J. Sci. Res., 4, 1225 (2015).
30 U. Mabona, A. Viljoen, E. Shikanga, A. Marston and Van Vuuren, J. Ethnopharmacol., 148, 45 (2013).   DOI
31 N. Janakiraman and M. Johnson, Res. Rev. J. Pharmacol. Toxicol. Stud., 3, 25 (2015).
32 V. Makarov, A. J. Love, O. V. Sinitsyna, S. S. Makarova, I. V. Yaminsky, M. E. Taliansky and N. O. Kalinina, Acta Naturae, 6, 35 (2014).   DOI
33 K. Govindaraju, S. K. Basha, V. G. Kumar and G. Singaravelu, J. Mater. Sci., 43, 5115 (2008).   DOI
34 T. C. Prathna, L. Mathew, N.Chandrasekaran, A. M. Raichur, and A. Mukherjee, Biomimetics Learning from Nature, p.1, ed. A. Mukherjee, IntechOpen (2010).
35 M. A. Johnson, A. Santhanam, S. Thangaiah and J. Narayanan, Parti. Sci. Tech., 36, 578 (2018).   DOI
36 W. Rizwan, Y.-S. Kim, A. Mishra, S.-I. Yun and H.-S. Shin, J. Nanoscale Res. Lett., 5, 1675 (2010).   DOI
37 J. Sunita, G. Suresh, N. Madhav and R. Anjali, J. Cluster Sci., 22, 121 (2011).   DOI
38 M. Stan, A. Popa, D. Toloman, T. D. Silipas and D. C. Vodnar, Acta Metall. Sin. (Engl. Lett.), 29, 228 (2016).   DOI
39 H. Zhang and G. Chen, Environ. Sci. Technol., 43, 2905 (2009).   DOI