Browse > Article
http://dx.doi.org/10.3740/MRSK.2019.29.10.639

Synthesis and Printability of Aqueous Ceramic Ink with Graft Polymer  

Lee, Ji-Hyeon (Ceramicware Technology Center, Korea Institute of Ceramic Engineering and Technology)
Hwang, Hae-Jin (Division of Material Science and Engineering, Inha University)
Kim, Jin-Ho (Ceramicware Technology Center, Korea Institute of Ceramic Engineering and Technology)
Hwang, Kwang-Taek (Ceramicware Technology Center, Korea Institute of Ceramic Engineering and Technology)
Han, Kyu-Sung (Ceramicware Technology Center, Korea Institute of Ceramic Engineering and Technology)
Publication Information
Korean Journal of Materials Research / v.29, no.10, 2019 , pp. 639-646 More about this Journal
Abstract
Ink-jet printing is a manufacturing process technology that directly prints a digitalized design pattern onto a substrate using a fine ink jetting system. In this study, environmentally friendly yellow aqueous ceramic ink is synthesized by mixture of distilled water, yellow ceramic pigment and additives for ink-jet printing. The graft polymer, which combines electrostatic repulsion and steric hindrance mechanism, is used as a surfactant for dispersion stability of aqueous ceramic ink. Synthesized ceramic ink with graft polymer surfactant shows better dispersion stability than did ceramic ink with PAA surfactant; synthesized ink also shows desirable ink-jet printability with the formation of a single ink droplet during printability test. Finally, ceramic ink printed on glass substrate and ceramic ink with graft polymer surfactant shows a high contact angle without surface treatment on glass substrate. Consequently, it is confirmed that the ceramic ink with graft polymer surfactant can achieve high printing resolution without additional surface treatment process.
Keywords
ceramic ink; contact angle; ink-jet printing; printability;
Citations & Related Records
연도 인용수 순위
  • Reference
1 P. J. Smith and J. Stringer, Fundamentals of inkjet printing: the science of inkjet and droplets, p.397, S. D. Hoath, John Wiley & Sons, Germany (2016).
2 K. M. Jeong, J. M. Won, Y. K. Lee and K. Koseki, J. Korea TAPPI, 46, 46 (2014).
3 O. Watanabe, T. Hibino and M. Sakakibara, Qualicer 2012 XII Global Forum on Ceramic Tile, 73, 73 (2012).
4 L. Creagh, M. McDonald and W. Letendre, Equipment for Electronic Products Manufacturing, 8, 9 (2004).
5 C. S. Kim, S. J. Park, W. Sim, Y. J. Kim and Y. Yoo, Comput. Fluids, 38, 602 (2009).   DOI
6 Y. Yoshioka, P. D. Calvert and G. E. Jabbour, Macromol. Rapid Commun., 26, 238 (2005).   DOI
7 M. He, O. Stoevesandt, E. A. Palmer, F. Khan, O. Ericsson and M. J. Taussig, Nat. Methods, 5, 175 (2008).   DOI
8 J. T. Delaney, P. J. Smith and U. S. Schubert, Soft Matter, 5, 4866 (2009).   DOI
9 H. Kobayashi, M. Matsuoka, M. Nagae, H. Honda, T. Suzuki, K. Ogawa and H. Maeda, Soc. Imaging Sci. Technol., 2, 903 (2008).
10 M. Singlard, A. Aimable, M. Lejeune, C. Dossou-Yovo, M. Poncelet, R. Noguera and C. Modes, Powder. Technol., 266, 303 (2014).   DOI
11 G. L. Gungor, A. Kara, D. Gardini, M. Blosi, M. Dondi and C. Zanelli, Dyes Pigm., 127, 148 (2016).   DOI
12 E. A. Clark, M. R. Alexander, D. J. Irvine, C. J. Roberts, M. J. Wallace, S. Sharpe, J. Yoo, R. J. M. Hague, C. J. Tuck and R. D. Wildman, Int. J. Pharm., 529, 523 (2017).   DOI
13 E. Saleh, P. Woolliams, B. Clarke, A. Gregory, S. Greedy, C. Smartt, R. Wildman, I. Ashcroft, R. Hague, P. Dickens and C. Tuck, Addit. Manuf., 13, 143 (2017).   DOI
14 Z. Pan, Y. Wang, H. Huang, Z. Ling, Y. Dai and S. Ke, Ceram. Int., 41, 12515 (2015).   DOI
15 G. Ferrari and P. Zannini, Bol. Soc. Esp. Ceram. vidr., 56, 226 (2017).   DOI
16 N. F. Morrison and O. G. Harlen, Rheol. acta, 49, 619 (2010).   DOI
17 N. Reis, C. Ainsley and B. Derby, J. Appl. Phys., 97, 094903 (2005).   DOI
18 A. Friederich, J. R. Binder and W. Bauer, J. Am. Ceram. Soc., 96, 2093 (2013).   DOI
19 C. P. Whitby, P. J. Scales, F. Grieser, T. W. Healy, G. Kirby, J. A. Lewis and C. F. Zukoski, J. Colloid. Interface Sci., 262, 274 (2003).   DOI
20 S. Ilkhanizadeh, A. I. Teixeira and O. Hermanson, Biomater., 28, 3936 (2007).   DOI
21 D. Kuscer, G. Stavber, G. Trefalt and M. Kosec, J. Am. Ceram. Soc., 95, 487 (2012).   DOI
22 H. E. Hoefdraad, J. Inor. Nucl. Chem., 37, 1917 (1975).   DOI
23 D. Pawlak, Z. Frukacz, Z. Mierczyk, A. Suchocki and J. Zachara, J. Alloy. Comp., 275, 361 (1998).
24 G. De, A. Licciulli and M. Nacucchi, J. Non-Crys. Solid., 201, 153 (1996).   DOI
25 C. Lemarchand, P. Couvreur, C. Vauthier, D. Costantini and R. Gref, Int. J. Pharm., 254, 77 (2003).   DOI
26 O. Mengual, G. Meunier, I. Cayre, K. Puech and P. Snabre, Talanta, 50, 445 (1999).   DOI
27 J. H. Lee, H. J. Hwang, J. H. Kim, K. T. Hwang and K. S. Han, J. Kor. Ceram Soc., 53, 75 (2016).   DOI
28 V. S. Solana, Qualicer, 14, 1 (2014).
29 J. Stringer and B. Derby, J. Eur. Ceram. Soc., 29, 913 (2009).   DOI
30 B. Derby, N. Reis, K. A. M. Seerden, P. S. Grant and J. R. G. Evans, MRS Online Proceedings Library Archive, 625, 195 (2000).   DOI
31 N. Reis and B. Derby, MRS Online Proceedings Library Archive, 625, 117 (2000).   DOI