• 제목/요약/키워드: Energy dependence

검색결과 1,068건 처리시간 0.024초

유채 종자의 수본확산계수에 관한 연구 (Estimation of Effective Moisture Diffusivity of Rapeseed (Brassica napus L.))

  • ;홍상진;한재웅;금동혁
    • Journal of Biosystems Engineering
    • /
    • 제33권5호
    • /
    • pp.296-302
    • /
    • 2008
  • The effective moisture diffusivity and its dependence on drying temperature during drying of rapeseed were experimentally investigated. The data were recorded from thin layer drying experiments at nine different combinations of drying air temperatures of 40, 50, and $60^{\circ}C$ and the relative humidities of 30, 45, and 60%. The moisture diffusion equation was analyzed using stepwise multiple regression analysis. Effective moisture diffusivities were calculated based on the moisture diffusion equation for a spherical shape using Fick's second law. The effective diffusivities during the drying of rapeseed were $l.72{\times}10^{-11}$, $2.41{\times}10^{-11}$ and $3.31{\times}10^{-11}\;m^2{\cdot}s^{-1}$ at 40, 50 and $60^{\circ}C$, respectively. The activation energy for moisture diffusion during drying was $28.47\;kJ{\cdot}mol^{-1}$. The dependence of moisture diffusivity on temperature was described by an Arrhenius-type equation. Drying occurred in the falling rate period and the internal moisture diffusion phenomenon is the governing physical mechanism of the moisture movement in the particles.

고온상태에서의 크리이프 파단거동에 관한 연구 (A Study on the Creep-Fracture Behavior under High Temperature)

  • 강대민;구양;백남주
    • 한국안전학회지
    • /
    • 제1권1호
    • /
    • pp.41-49
    • /
    • 1986
  • Modern technological progress demands the use of materials at high temperature and high pressure. One of the most critical factors in considering such applications-perhaps the most critical one-is creep behavior. In this study the activation energy for the creep rupture (Qf) and the stress dependence of rupture time (n') have been determined during creep of Al 7075 alloy eve, the temporature range of $200^{\circ}C to 500^{\circ}C$ and stress range of 0.64 kgf/$\textrm{mm}^2$ to 9.55 kgf/$\textrm{mm}^2$, respectively, in order to investigate the creep-rupture property. Constant load creep tests were carried out in the enperiment At around the temperature $210^{\circ}C~390^{\circ}C$ and the stress level 1.53~9.55(kgf/$\textrm{mm}^2$), the stress dependence of rupture time(n') had the value of 6.6~6.78 but at 50$0^{\circ}C$, the value of 1.3. Besides at around the temperature of $200^{\circ}C~500^{\circ}C$ and under the stress level of 0.89~8.51 (kgf/$\textrm{mm}^2$), the activation energy for the creepprupture (Qf) was nearly equal to that of the volume self diffusion of pure aluminum (34Kca1/mo1e)

  • PDF

Mode Propagation in X-Ray Waveguides

  • Choi, J.;Jung, J.;Kwon, T.
    • Journal of the Optical Society of Korea
    • /
    • 제12권2호
    • /
    • pp.112-117
    • /
    • 2008
  • Single-mode propagation conditions of X-ray waveguides are investigated by numerical calculations in order to understand the importance of waveguide design parameters, such as core thickness and the optical constants of waveguide materials, on the transmission and coherence properties of the waveguide. The simulation code for mode analyzing is developed based on a numerical solution of the parabolic wave equation. The initial boundary value problem is solved numerically using a finite-difference scheme based on the Crank-Nicolson scheme. The E-field intensities in a core layer are calculated at an X-ray energy of 8.0 keV for air and beryllium(Be) core waveguides with different cladding layers such as Pt, Au, W, Ni and Si to determine the dependence on waveguide materials. The highest E-field intensity radiated at the exit of the waveguide is obtained from the Pt cladded beryllium core with a thickness of 20 nm. However, the intensity from the air core waveguide with Pt cladding reaches 64% of the Be-Pt waveguide. The dependence on the core thickness, which is the major parameter used to generate a single mode in the waveguide, is investigated for the air-Pt, and Be-Pt waveguides at an X-ray energy of 8.0 keV. The mode profiles at the exit are shown for the single mode at a thickness of up to 20 nm for the air-Pt and the Be-Pt waveguides.

뜨겨운 곁쌓기법에 의해 성장된 $ZnIn_2Se_4$ 단결정 박막의 전기적 특성과 에너지 갭의 온도 의존성 (Study on Electrical Properties and Temperature Dependence of Energy Band Gap for $ZnIn_2Se_4$ Single Crystal Thin Film Grown by Hot Wall Epitaxy)

  • 박향숙
    • 통합자연과학논문집
    • /
    • 제3권1호
    • /
    • pp.54-59
    • /
    • 2010
  • A stoichiometric mixture of evaporating materials for $ZnIn_2Se_4$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $ZnIn_2Se_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperatures were $630^{\circ}C$ and $400^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $ZnIn_2Se_4$ single crystal thin films measured from Hall effect by van der Pauw method are $9.41{\times}10^{16}cm^{-3}$ and $292cm^2/v{\cdot}s$ at 293 K, respectively. The temperature dependence of the energy band gap of the $ZnIn_2Se_4$ obtained from the absorption spectra was well described by the Varshni's relation, $Eg(T)=1.8622eV-(5.23{\times}10^{-4}eV/K)T^2/(T+775.5K)$.

Bridgman법에 의한 $Cdln_2Te_4$ 단결정 성장과 에너지 밴드갭의 온도 의존성 (Growth and temperature dependence of energy band gap for $Cdln_2Te_4$ Single Crystal by Bridgman method)

  • 홍광준;박창선
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.112-113
    • /
    • 2006
  • A stoichiometric mixture for $Cdln_2Te_4$ single crystal was prepared from horizontal electric furnace. The $Cdln_2Te_4$ single crystal was grown in the three-stage vertical electric furnace by using Bridgman method. The quality of the grown crystal has been investigated by the x-ray diffraction and the photoluminescence measurements. The (001) growth plane of oriented $Cdln_2Te_4$ single crystal was confirmed from back-reflection Laue patterns. The carrier density and mobility of $Cdln_2Te_4$ single crystal measured with Hall effect by van der Pauw method are $8.61{\times}10^{16}\;cm^{-3}$ and $242\;cm^2/V{\cdot}s$ at 293 K, respectively. The temperature dependence of the energy band gap of the $Cdln_2Te_4$ single crystal obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)\;=\;1.4750\;eV\;-\;(7.69{\times}\;10^{-3}\;eV)T^2/(T+2147)$.

  • PDF

Higher-Order Conditional Random Field established with CNNs for Video Object Segmentation

  • Hao, Chuanyan;Wang, Yuqi;Jiang, Bo;Liu, Sijiang;Yang, Zhi-Xin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권9호
    • /
    • pp.3204-3220
    • /
    • 2021
  • We perform the task of video object segmentation by incorporating a conditional random field (CRF) and convolutional neural networks (CNNs). Most methods employ a CRF to refine a coarse output from fully convolutional networks. Others treat the inference process of the CRF as a recurrent neural network and then combine CNNs and the CRF into an end-to-end model for video object segmentation. In contrast to these methods, we propose a novel higher-order CRF model to solve the problem of video object segmentation. Specifically, we use CNNs to establish a higher-order dependence among pixels, and this dependence can provide critical global information for a segmentation model to enhance the global consistency of segmentation. In general, the optimization of the higher-order energy is extremely difficult. To make the problem tractable, we decompose the higher-order energy into two parts by utilizing auxiliary variables and then solve it by using an iterative process. We conduct quantitative and qualitative analyses on multiple datasets, and the proposed method achieves competitive results.

Dynamic loading tests and analytical modeling for high-damping rubber bearings

  • Kyeonghoon Park;Taiji Mazda;Yukihide Kajita
    • Earthquakes and Structures
    • /
    • 제25권3호
    • /
    • pp.161-175
    • /
    • 2023
  • High-damping rubber bearings (HDRB) are commonly used as seismic isolation devices to protect civil engineering structures from earthquakes. However, the nonlinear hysteresis characteristics of the HDRB, such as their dependence on material properties and hardening phenomena, make predicting their behavior during earthquakes difficult. This study proposes a hysteretic model that can accurately predicts the behavior of shear deformation considering the nonlinearity when designing the seismic isolation structures using HDR bearings. To model the hysteretic characteristics of the HDR, dynamic loading tests were performed by applying sinusoidal and random waves on scaled-down specimens. The test results show that the nonlinear characteristics of the HDR strongly correlate with the shear strain experienced in the past. Furthermore, when shear deformation occurred above a certain level, the hardening phenomenon, wherein the stiffness increased rapidly, was confirmed. Based on the experimental results, the dynamic characteristics of the HDR, equivalent stiffness, equivalent damping ratio, and strain energy were quantitatively evaluated and analyzed. In this study, an improved bilinear HDR model that can reproduce the dependence on shear deformation and hardening phenomena was developed. Additionally, by proposing an objective parameter-setting procedure based on the experimental results, the model was devised such that similar parameters could be set by anyone. Further, an actual dynamic analysis could be performed by modeling with minimal parameters. The proposed model corresponded with the experimental results and successfully reproduced the mechanical characteristics evaluated from experimental results within an error margin of 10%.

강봉댐퍼의 단면형상과 형상비에 따른 변위의존성 및 성능 평가 (Displacement Dependency and Capacity Evaluation According to the Cross-Sectional Shape and Aspect Ratio of Steel Rod Dampers)

  • 이현호
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제27권5호
    • /
    • pp.89-96
    • /
    • 2023
  • 본 연구에서는 강봉댐퍼의 변위의존성 평가, 강도 및 에너지소산능력을 평가하였다. 실험 변수는 단면형상 및 형상비이며, 총 6개의 실험체를 제작하였다. 실험 결과, 설계기준에서 제시한 변위 의존성 조건을 모든 실험체가 만족하는 것으로 평가되었다. 그리고 단면형상에 따른 강도 영향은 미비하였다. 결과적으로, 형상비 13.7의 강도 및 에너지소산능력이 우수한 것으로 평가되었다.

Optical Parametric Chirped-pulse Amplification of Femtosecond Ti:sapphire Laser Pulses by Using a BBO Crystal

  • Cha, Yong-Ho;Lee, Ki-Tae;Nam, Seong-Mo;Yoo, Byoung-Duk;Rhee, Yong-Joo
    • Journal of the Optical Society of Korea
    • /
    • 제7권3호
    • /
    • pp.139-144
    • /
    • 2003
  • We have characterized the optical parametric chirped-pulse amplification of femtosecond Ti:sapphire laser pulses by using a BBO crystal. It is numerically verified that a high gain and a broad gain bandwidth can be obtained with a 532-nm pump laser. The dependence of the gain profile of OPA on phase matching angles, pump intensity, and crystal length is numerically investigated. Experimental results shows that the temporal fluctuation of a pump laser causes the modulation of an amplified spectrum in OPCPA.

複合組織鋼의 衝擊破壞特性에 미치는 노치形狀 및 硬度比의 영향 (Effect of notch shape and hardness ratio on characteristics of impact fracture in dual phase steels)

  • 김정규;유승원;김일현
    • 오토저널
    • /
    • 제10권2호
    • /
    • pp.46-53
    • /
    • 1988
  • Effect of Notch Shape and Hardness Ratio on Characteristics of Impact Fracture in Dual Phase Steels. In this study, it is investigated the effect of notch shape and hardness ratio on the characteristics of impact fracture in dual phase steels. The impact test was carried out at the temperature range from -40.deg. C to room temperature with Instrumented Charpy Impact Tester. The main results obtained are as follows; 1, The maximum impact bending strength (.sigma.$_{max}$) increases with the tensile strength. Also, the impact energy depends on .sigma.$_{max}$. 2, In room temperature, the impact energy depends on crack-initiation energy (E$_{i}$) in case of the high hardness ratio (R=3.4), whereas depends on crack-propagation energy (E$_{p}$) in case of the low hardness ratio (R=1.8) and the dependence of crack-initiation energy of the impact characteristics decreases with increasing test temperature. These phenomena are result from the difficulty of cleavage facet formation.ion.ion.

  • PDF