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Abstract 

 
We perform the task of video object segmentation by incorporating a conditional random field 
(CRF) and convolutional neural networks (CNNs). Most methods employ a CRF to refine a 
coarse output from fully convolutional networks. Others treat the inference process of the CRF 
as a recurrent neural network and then combine CNNs and the CRF into an end-to-end model 
for video object segmentation. In contrast to these methods, we propose a novel higher-order 
CRF model to solve the problem of video object segmentation. Specifically, we use CNNs to 
establish a higher-order dependence among pixels, and this dependence can provide critical 
global information for a segmentation model to enhance the global consistency of 
segmentation. In general, the optimization of the higher-order energy is extremely difficult. 
To make the problem tractable, we decompose the higher-order energy into two parts by 
utilizing auxiliary variables and then solve it by using an iterative process. We conduct 
quantitative and qualitative analyses on multiple datasets, and the proposed method achieves 
competitive results. 
 
 
Keywords: Video object segmentation, Conditional random field, Convolution Neural 
Networks, Higher-order potential, 
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1. Introduction 

Video object segmentation (VOS) refers to the separation of a foreground object from the 
background of a video sequence. This task can be roughly categorized as unsupervised and 
supervised. Unsupervised methods do not require any annotated data, whereas supervised 
methods require the annotation of the foreground object in the video sequence. For more 
accurate segmentation of specific objects, we consider supervised methods in this study. The 
combination of traditional and new algorithms, such as conditional random fields (CRFs) and 
convolutional neural networks (CNNs), significantly promotes the development of existing 
research on video object segmentation. Although considerable progress has been made in this 
regard, the segmentation results are still unsatisfactory when the video scene is extremely 
complicated, for example, the disappearance and reappearance of an object and object 
occlusion. VOS is a basic task in the field of computer vision and has important applications 
in video classification and video editing. 

Recently, CNN-based methods have achieved excellent results in many vision tasks, such 
as object detection [1], image editing [2], prediction task [3-4], and classification task [5] and 
so on. As for VOS, among the recently proposed advanced algorithms, a method based on the 
combination of a probabilistic graph model and CNN has obtained significant results. The 
combination of a probabilistic graph model and deep learning algorithm has also been 
employed. The latest research in this field shows that the combination of a probabilistic graph 
model and deep learning algorithm can significantly enhance the accuracy of the model. 
Specifically, the CNN-based method [6] has strong object representation ability and high-order 
dependency representation ability, whereas the probabilistic-graph-model-based method has 
limited expression ability owing to its own reasons; thus, it cannot model complex scenes or 
complex dependencies. If one model can exhibit the advantages of both models, the accuracy 
of the new model will significantly increase. This requires a new algorithm that can integrate 
the benefits of both to make the model more sensitive to the appearance information of the 
object and make better use of the temporal information. In addition, considering the high 
complexity of optical flow calculation, we propose a new filtering mechanism to improve the 
efficiency of optical flow calculation to obtain the temporal information of video sequences. 
The experimental results show that the proposed model is competitive in terms of both 
accuracy and efficiency. 

We propose a higher-order CRF model for treating the task of VOS as a problem of finding 
the best labeling node in the graph model, illustrated in Fig. 1. Our model attempts to embed 
the computational process of a CNN into the iterative updating process of CRFs. Specifically, 
the temporal potential in our model is produced by a color histogram, and the spatial potential 
in our model is produced by a color histogram and optical flow orientation histogram. Existing 
methods have limited presentation capabilities for the object, making it impossible to 
effectively model a complicated segmentation scene. Some higher-order energies [7] based on 
global feature limitations have been suggested to solve these problems. The higher-order 
energy model based on CNNs is superior to that based on traditional features. 

In this study, CNNs encode the unary potential and higher-order potential. We train a CNN 
to refine the coarse mask of the input in an entire video by using a reference frame and mask. 
We assume that the mask can be refined effectively and efficiently by employing trained CNNs, 
and we can define a function to evaluate a given mask as a whole. The higher-order potential 
can then be established by using a CNN-based function over the pixels within a frame. Thus, 
when complicated scenarios appear, our model can deal with the segmentation of objects. 
Finally, the higher-order energy dependent on CNNs is integrated into the Markov random 
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field (MRF) inference. However, the optimization of the energy equation is a difficult problem 
because of the existence of higher-order energy terms. Thus, we apply very efficient method 
to solve this problem. By introducing auxiliary variables, we first decouple the optimization 
equation into two parts and then use iterative algorithms. In this process, the higher-order 
energy term based on the CNN does not need to be calculated specifically. Our approach 
achieves competitive performance on the DAVIS 2016 dataset. 

Fig. 1. Structure of our model. We construct a high-order conditional random field for video object 
segmentation. In this method, the segmentation problem is transformed into a node-labeling problem 
in the graph model, and the final segmentation result is obtained by modeling the high-order energy 
equation. Unary potential and high-order potential are constructed by using a convolutional neural 

network, and pairewise potential is constructed by applying color feature and motion feature. 

2. Related Work 

2.1 Unsupervised VOS 
Unsupervised approaches do not require labeled data to be entered and automatically remove 
the object of interest from the video. The point trajectory segments video objects by analyzing 
the long-term motion information for pixels. In general, pixels belonging to the same object 
have a similar direction of motion and speed. Thus, motion information plays an important 
role in correctly separating objects from a video. In [8], the long-term motion information 
point trajectory was used to segment video objects, and promising results were obtained. 
Specifically, these approaches produce point trajectories and group them together. These 
clustered points are used to prioritize the segmentation of video objects. Over-segmentation 
methods [9] cluster pixels according to traditional features (color and texture) and then 
establish a spatial temporal MRF model. These methods generate oversegmentation regions. 
The oversegmentation algorithm is very important in the traditional object segmentation 
algorithm, which is between standard VOS algorithms and pixel matching. This method 
significantly reduces the computational cost because it is based on block matching rather than 
pixel matching. However, this algorithm cannot handle complicated segmentation scenarios. 

In [10], the results of salience detection were used as prior video object segmentation 
information. In [11], certain region selection techniques were used to select a number of 
candidate objects on each frame, sort on the basis of the score, and select the most likely 
candidate block among the candidates. This method was improved by [12] by fully utilizing 
the repeatability of the object in a video sequence. Finally, the detection of saliency and the 
proposal for objects were treated as preprocessing for VOS. However, these techniques always 
produced inaccurate outputs, resulting in unsatisfactory segmentation outcomes. Moreover, 
these techniques are costly in terms of their calculations. 

Higher-order 
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Although these methods of video segmentation have benefits, they are only sufficient for 
minimal scenes, where the object to be segmented varies considerably from the context. In 
addition, because of the large number of invalid calculations, the model incurs high 
computational costs. As a result, the supervised method is widely used to reduce the 
computational complexity of the model and improve its segmentation accuracy. 

2.2 Supervised VOS 
The supervised approach can be solved by inserting label data to provide guidance information 
for the model to solve the problem when the unsupervised segmentation method cannot define 
particular segmentation artifacts. Work in [9] determines how to propagate the labeled data to 
the video as a whole. Chen et al. [8] use the motion information of pixels to propagate through 
the optical flow, and the main objective of this technique is to locate the corresponding point 
on the frames for each pixel. Literature [13] proposes a method of pixel block matching to 
obtain a pixel trajectory in the video and then propagate the labeled data to the entire video 
sequence by trajectory. However, this method cannot solve the problems of occlusion and 
rotation in the video. A kind of optical flow based techniques are suggested in [14-15], that 
incorporates trajectory and object segmentation. First, the optical flow was used to obtain the 
motion trajectory of the pixels, and then, the pairwise differences were calculated for all 
trajectories. The results were recorded in a two-dimensional matrix known as the adjacency 
matrix. The spectral clustering algorithm was used to divide all trajectories into objects and 
backgrounds under supervision of the labeled information, and then the segmentation was 
completed. The accuracy of the results produced by these methods depends on the accuracy of 
the motion estimation. 

The other methods [16] are completely different from the previous method. They usually 
construct a probability model for the foreground (object) and background using labeled data 
and then predict the label probability of pixels in the frames. Finally, the pixel can be labeled 
according to the probability that the pixel belongs to the foreground and background. Work in 
[8] set a Gaussian mixture model on the labeled object and background data and then used the 
model to predict the next frame to update the probability model repeatedly with the 
segmentation results. Literature [7] added an energy constraint of a higher order to ensure the 
consistency of superpixel segmentation. A long-term strategy is proposed in [17] to improve 
the global consistency. In particular, the problem of VOS is transformed into the problem of 
spatiotemporal propagation of labels. 

2.3 CNN-based Methods 
In recent years, many methods have been applied to VOS owing to the excellent performance 
of CNNs in static image segmentation. These techniques can be roughly categorized into two 
classes: one based on motion and one based on detection. The distinction between the two 
techniques is whether the motion data are considered. Temporal information is a significant 
indicator of the segmentation of video objects. 

In general, motion-based approaches make the most use of the temporal consistency of the 
moving object; in particular, pixels in the same object have similar motion vectors in each 
frame. A combination of optical flow and deep networks was proposed in [18]. The optical 
flow is very important for the use of the model's temporal information. Some methods [19] 
take advantage of the optical flow to maintain a consistency of motion between frames and 
improve the accuracy of model segmentation. A CNN-based spatial-temporal MRF model was 
proposed by [20-21]. In [22], the optical flow was used to enhance label propagation. A 
combination of a CNN and recurrent neural network for VOS was proposed in [23]. 
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Some methods use the learned object appearance to perform pixel-level detection of objects 
in each frame of the video. These approaches depend on fine-tuning a trained CNN using 
reference frame annotation. In [6], a model that combines offline training with online fine-
tuning was proposed. This model fine-tunes a CNN in the video reference frame. Subsequently, 
in [24], an online adaptive network was proposed for VOS, where the first frame of a given 
video sequence was used by the network to fine-tune the changes in the appearance of the 
object. 

CNN-based approaches can be divided into two categories: one is based on motion data and 
the other is based on pixel detection. The classification is based on whether the motion 
information between frames is used as a cue for the segmentation of video artifacts. The 
segmentation accuracy of the model may be improved by using reliable motion information 
between frames. When the object's appearance and position change smoothly, the model can 
easily solve the complex deformation and displacement problems of the object. However, 
these models are easily affected by occlusion and rapid motion. Furthermore, because the 
model makes full use of motion information between frames, it is robust in case of occlusion 
and fast motion. However, when the foreground object and background are similar in 
appearance, it is difficult for the model to segment the object precisely. 

3. Proposed Method 
Given a video sequence, 𝑉𝑉 = {𝑓𝑓1,𝑓𝑓2, … ,𝑓𝑓𝑛𝑛}, the objective is to segment the foreground object 
from 𝑉𝑉 . The discrete random field, 𝑋𝑋, is defined over all pixels in 𝑉𝑉  and 𝑙𝑙(𝑋𝑋) ∈ {0,1} to 
denote the labeling of all pixels. The proposed method is used to inference and minimize 𝐸𝐸(𝑋𝑋), 
                                                    𝑙𝑙∗(𝑋𝑋) = argmin𝑙𝑙(𝑋𝑋)𝐸𝐸(𝑋𝑋)                                                  (1) 
where 𝐸𝐸(𝑋𝑋) is defined as 

𝐸𝐸(𝑋𝑋) = 𝐸𝐸𝑢𝑢(𝑋𝑋) + 𝛼𝛼 ∙ 𝐸𝐸𝑝𝑝(𝑋𝑋) + 𝛽𝛽 ∙ 𝐸𝐸ℎ(𝑋𝑋)                                (2) 
𝐸𝐸𝑢𝑢(𝑋𝑋) , 𝐸𝐸𝑝𝑝(𝑋𝑋) , and 𝐸𝐸ℎ(𝑋𝑋)  denote the unary potential, pairwise potential, and high-order 
potential, respectively. 𝛼𝛼 and 𝛽𝛽 are the weights used to balance this term with other terms. 
These terms are described in detail in the following sections. 

3.1 Unary Potential 
The deep visual word model has been shown to be effective in the segmentation of video 
objects, and we used it to generate the unary potential of each pixel as Fig. 2 shown. In detail, 
a fixed number of cluster centroids is used to represent an object in an embedding space, and 
the range of the metric learning method is interpolated. Each centered cluster in the embedding 
space represents a portion of the foreground object in the current frame. We used a deep visual 
word model to represent each object in the frame. 

The use of a deep visual word model helps matching to be more robust. Some parts of an 
object may remain consistent even though the object as a whole may be occluded, distorted, 
or vanish in the remaining frames of the same video sequence. 

First, in the first frame, 𝑓𝑓1, we input all pixels into a CNN, 𝑓𝑓𝜃𝜃, to calculate the embedding 
for each pixel, 𝑥𝑥𝑖𝑖, which forms the support set, 𝑆𝑆. Then, for all pixels, we compute the visual 
words. Let the set of background pixels be 𝑆𝑆𝑏𝑏, and the set of foreground pixels be 𝑆𝑆𝑓𝑓, where 
𝑆𝑆 = 𝑆𝑆𝑏𝑏 ∪ 𝑆𝑆𝑓𝑓. The k-means algorithm was used to partition each set into 𝐾𝐾 clusters, 𝑆𝑆𝑏𝑏1, … , 𝑆𝑆𝑏𝑏𝐾𝐾 
and 𝑆𝑆𝑓𝑓1, … , 𝑆𝑆𝑓𝑓𝐾𝐾. 𝜑𝜑𝑏𝑏𝑘𝑘 and 𝜑𝜑𝑓𝑓𝑘𝑘 denote the respective cluster centroids, where 
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𝑆𝑆𝑏𝑏1, … , 𝑆𝑆𝑏𝑏𝐾𝐾 = argmin𝑆𝑆𝑏𝑏1,…,𝑆𝑆𝑏𝑏

𝐾𝐾 ∑ ∑ �𝑓𝑓𝜃𝜃(𝑥𝑥𝑖𝑖) − 𝜑𝜑𝑏𝑏𝑘𝑘)�2
2

𝑥𝑥𝑖𝑖∈𝑆𝑆𝑏𝑏
𝑘𝑘

𝐾𝐾
𝑘𝑘=0

𝑆𝑆𝑓𝑓1, … , 𝑆𝑆𝑓𝑓𝐾𝐾 = argmin𝑆𝑆𝑓𝑓1,…,𝑆𝑆𝑓𝑓
𝐾𝐾 ∑ ∑ �𝑓𝑓𝜃𝜃(𝑥𝑥𝑖𝑖) − 𝜑𝜑𝑓𝑓𝑘𝑘)�

2
2

𝑥𝑥𝑖𝑖∈𝑆𝑆𝑓𝑓
𝑘𝑘

𝐾𝐾
𝑘𝑘=0

                             (3) 

Here, 𝜑𝜑𝑏𝑏𝑘𝑘 and 𝜑𝜑𝑓𝑓𝑘𝑘 are defined as follows: 

�
𝜑𝜑𝑏𝑏𝑘𝑘 = 1

𝑆𝑆𝑏𝑏
𝐾𝐾 ∑ 𝑓𝑓𝜃𝜃(𝑥𝑥𝑖𝑖)𝑥𝑥𝑖𝑖∈𝑆𝑆𝑏𝑏

𝑘𝑘

𝜑𝜑𝑓𝑓𝑘𝑘 = 1
𝑆𝑆𝑓𝑓
𝐾𝐾 ∑ 𝑓𝑓𝜃𝜃(𝑥𝑥𝑖𝑖)𝑥𝑥𝑖𝑖∈𝑆𝑆𝑓𝑓

𝑘𝑘
                                                     (4) 

Finally, a deep visual word model was used to represent the pixel label. In other words, the 
matching probability of pixels and visual words can be defined as follows: 

�
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Here, 𝜎𝜎 is defined as follows: 
𝜎𝜎 = ∑ [�𝑓𝑓𝜃𝜃(𝑥𝑥𝑖𝑖) − 𝜑𝜑𝑓𝑓𝑘𝑘)�

2
2 + �𝑓𝑓𝜃𝜃(𝑥𝑥𝑖𝑖) − 𝜑𝜑𝑏𝑏𝑘𝑘)�2

2]𝐾𝐾
𝑘𝑘=1                            (6) 

The unary potential is represented by the negative log likelihood of the labeling for each single 
random variable as follows: 

𝐸𝐸𝑢𝑢(𝑋𝑋) = − log𝑝𝑝�𝑦𝑦𝑖𝑖 = 1�𝑥𝑥𝑗𝑗�[𝑦𝑦𝑖𝑖 = 1] − log𝑝𝑝�𝑦𝑦𝑖𝑖 = 0�𝑥𝑥𝑗𝑗�[𝑦𝑦𝑖𝑖 = 0]              (7) 
Here, [∗] = 1, when ∗ is true; otherwise, [∗] = 0, 𝑦𝑦𝑖𝑖  is the label assigned by our proposed 
method. 

 
Fig. 2. Overview of constructing a visual word model. The embedding network is a deep CNN, and its 

input is the reference frame (generally the first frame) and its mask. It outputs a high-dimensional 
vector with dimension 𝑑𝑑 and performs clustering for each class with subclasses of 𝑘𝑘. The centroid of 

each cluster is selected from among them as a guide for establishing the visual word model. 
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3.2 Pairwise Potential 
Pairwise potential is often used to decrease the discontinuity of pixels having the same label 
such that, owing to some interfering factors, the neighboring pixels of the same label do not 
break. Similar to other methods, the pairwise potential is primarily used for spatial-temporal 
smoothness in the proposed approach. Two pixels are spatially connected if they share one 
edge, and two superpixels are temporally connected if they have in-between pixels linked by 
optical flow. In particular, we used the color and optical flow orientation of the histogram to 
calculate the local similarity. 𝜀𝜀𝑡𝑡 denotes the time pair set, and 𝜀𝜀𝑠𝑠 denotes the spatial pair set. 
Thus, 𝐸𝐸𝑝𝑝 can be defined as follows: 

𝐸𝐸𝑝𝑝(𝑋𝑋) = 𝜃𝜃𝑠𝑠 ∙ ∑ 𝐸𝐸𝑝𝑝𝑠𝑠(𝑠𝑠, 𝑠𝑠′)(𝑠𝑠,𝑠𝑠′)𝜖𝜖𝜀𝜀𝑠𝑠 + 𝜃𝜃𝑡𝑡 ∙ ∑ 𝐸𝐸𝑝𝑝𝑡𝑡(𝑡𝑡, 𝑡𝑡′)(𝑡𝑡,𝑡𝑡′)𝜖𝜖𝜀𝜀𝑡𝑡                             (8) 
Here, 𝐸𝐸𝑝𝑝𝑠𝑠(𝑠𝑠, 𝑠𝑠′)and 𝐸𝐸𝑝𝑝𝑡𝑡(𝑡𝑡, 𝑡𝑡′) are the energies linked to the spatial and temporal dependencies, 
respectively. 𝜃𝜃𝑠𝑠 and 𝜃𝜃𝑡𝑡 are the two weight parameters for a linear combination. Overall, the 
spatial and temporal pairwise potentials are defined as follows: 

�
𝐸𝐸𝑝𝑝𝑠𝑠 = [𝑙𝑙(𝑠𝑠) ≠ 𝑙𝑙(𝑠𝑠′)] ∙ exp (−𝜎𝜎ℎ−1‖ℎ(𝑠𝑠) − ℎ(𝑠𝑠′)‖2) ∙ exp (−𝜎𝜎𝑐𝑐−1‖𝑐𝑐(𝑠𝑠) − 𝑐𝑐(𝑠𝑠′)‖2)

𝐸𝐸𝑝𝑝𝑡𝑡 = [𝑙𝑙(𝑡𝑡) ≠ 𝑙𝑙(𝑡𝑡′)] ∙ exp (−𝜎𝜎𝑐𝑐−1‖𝑐𝑐(𝑡𝑡) − ℎ(𝑡𝑡′)‖2)
   (9) 

Here, ℎ() is a normalized histogram of optical flow discretized with respect to the angle, and 
𝑐𝑐(∙) is the color histogram. 𝜎𝜎ℎ and 𝜎𝜎𝑐𝑐 are the two weight parameters for the balance. 

3.3 High-order Potential 
In general, when the shape of the object is irregular and the speed of motion between frames 
is too high, the quadratic energy equation is not sufficient to handle complex segmentation 
scenarios. Local information constraints cannot be addressed effectively. The higher-order 
energy term, based on global constraints, is, therefore, considered to enhance the ability of the 
model to deal with complex scenarios. 

We represent all pixels in a frame as a clique for high-order dependencies, where the 
labeling for each pixel depends on all other pixels in the same frame. We formulate an energy 
function, 𝑓𝑓𝜏𝜏(∙), to evaluate a given mask, 𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚. To build high-order dependencies with all 
pixels in the current frame, we define 𝑓𝑓𝜏𝜏(∙) as 

𝑓𝑓𝜏𝜏(∙) = ‖𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
∗ ‖22                                               (10) 

If the current mask is more similar to the mask of the ground truth, then it always has a very 
low energy penalty while 𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

∗  is unsolved. Here, we approximate 𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
∗  by means of a CNN 

and define 𝑓𝑓𝜏𝜏(∙) as 
𝑓𝑓𝜏𝜏(∙) = �𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − RGMP(𝑓𝑓1,𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑓𝑓1 ,𝑓𝑓𝑖𝑖,𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)�2
2
                               (11) 

where RGMP() is a CNN-refined mask that accepts 𝑓𝑓1 for the reference frame given in it, 
𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑓𝑓1  for the reference frame, current frame 𝑓𝑓𝑖𝑖  for the previous frame, and 𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  for the 

previous frame, and the refined mask is the output. It can be observed visually that this 
definition apportions a lower energy to a mask when the refined mask is more similar to itself. 
The 𝑓𝑓𝜏𝜏(∙) function can allocate better masks to lower energies, and RGMP() can refine a 
coarse mask to a better one and hold a decent mask unchanged. Thus, it is possible to define 
the high-order potential in the proposed method as 𝐸𝐸ℎ(𝑋𝑋) = 𝑓𝑓𝜏𝜏(∙). 

3.4 Inference 
The aforementioned higher-order energy definition is more expressive than the traditional 
higher-order energy definition, but the problem of optimization in the MRF is intractable. In 
this paper, we propose an approximate method to solve the inference problem. 
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We decouple the pairwise potential, 𝐸𝐸𝑝𝑝, and higher-order potential, 𝐸𝐸ℎ, to solve the problem 
by adding an auxiliary variable, 𝑌𝑌, and (12) can be approximated as follows: 

𝐸𝐸(𝑋𝑋,𝑌𝑌) = 𝐸𝐸𝑢𝑢(𝑋𝑋) + 𝛼𝛼 ∙ 𝐸𝐸𝑝𝑝(𝑋𝑋) + 𝛽𝛽 ∙ 𝐸𝐸ℎ(𝑌𝑌) + Λ ∙ ‖𝑋𝑋 − 𝑌𝑌‖22                (12) 
Specifically, 𝑌𝑌  is a near approximation of 𝑋𝑋 . This function can be solved by iteratively 
updating either 𝑋𝑋 or 𝑌𝑌. Here, we use a classical iterative method called iterated conditional 
modes (ICM) for efficiency considerations. In particular, we update 𝑋𝑋𝑖𝑖𝜖𝜖𝜖𝜖 to minimize 𝐸𝐸(𝑋𝑋), 
whereas the rest of the variable, 𝑋𝑋, is fixed. The ICM method constantly updates variables 
until convergence, or achieves the number of iterations we set. Generally, the number is set to 
𝐾𝐾. The specific optimization process is shown in the above algorithm. 

Algorithm 1 Optimization algorithm 
Input: The outer loop 𝐾𝐾, the inner loop 𝐿𝐿, total number of pixels 𝑃𝑃, and the number of 
frames 𝐹𝐹 
Output: the segmentation masks 𝑦𝑦(𝐾𝐾) 
Initialization: 𝑥𝑥(0) = 𝑦𝑦(0) 
for 𝑘𝑘 from 1 to 𝐾𝐾 do 
      𝑥𝑥(𝑘𝑘,0) ← 𝑥𝑥(𝑘𝑘−1) 
      for 𝑙𝑙 from 1 to 𝐿𝐿 do 
           for 𝑖𝑖 from 1 to 𝑃𝑃 do 
                 𝑥𝑥𝑖𝑖

(𝑘𝑘,𝑙𝑙) ← 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥𝑖𝑖 �Λ(𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖
(𝑘𝑘−1))2 + 𝐸𝐸𝑢𝑢(𝑥𝑥𝑖𝑖) + ∑ 𝐸𝐸𝑡𝑡(𝑖𝑖,𝑗𝑗)∈𝜂𝜂𝜏𝜏 (𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗

(𝑘𝑘,𝑙𝑙−1))� 
      𝑥𝑥(𝑘𝑘) ← 𝑥𝑥(𝑘𝑘,𝐿𝐿) 
      for 𝑐𝑐 from 1 to 𝐹𝐹 do 
            𝑦𝑦𝑐𝑐

(𝑘𝑘) ← 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑥𝑥𝑐𝑐
(𝑘𝑘)) 

return 𝑦𝑦(𝐾𝐾) 

4. Implementation and Training Details 

4.1 Implementation Details 
Details of 𝒇𝒇(𝜽𝜽). We used the Deeplabv2 [25] model trained on the COCO dataset [26] as the 
𝑓𝑓(𝜃𝜃) encoder. The 𝑓𝑓(𝜃𝜃) encoder converts the input frame pixels into higher-dimensional 
vectors and uses a bilinear interpolation algorithm to process and restore the image to its 
original image size. Finally, a clustering algorithm was used to cluster these high-dimensional 
vectors to form a visual word model. Under normal circumstances, we classified the 
foreground and background clusters into 𝐾𝐾 = 50 clustering centers. 
Details of 𝒇𝒇𝝉𝝉(∙). We propose a novel structure of the encoder and decoder, the input of which 
is the reference frame and the mask, the mask of the previous frame, and the current frame, 
and the final output of which is the precise frame mask. The network, shown in Fig. 3, is 
composed of two encoder-sharing parameters: a decoder and a convolution block. A guidance 
stream and target stream are included in the encoder. The reference stream input includes the 
reference image (first frame) and the ground truth mask. A guide mask and target image 
corresponding to the previous frame are provided for the target stream. The encoder was built 
using ResNet50. We modified it to accept the four-channel vector input by inputting an extra 
single-channel filter in the first convolution layer. Except that newly added filters are randomly 
initialized, all weights of our model are initialized with a pretrained ImageNet network. The 
outputs from the two encoder streams are merged and then input into the global convolution 
block. The module performs global feature matching and obtains the contours of the 
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foreground object. We use global convolution to overcome the locality of the convolution 
operation, effectively expanding the receptive field. Our decoder accepts the output of the 
global convolution block via a skip connection and generates a mask output in the target 
encoder stream. We used the refinement module to effectively merge the features of different 
scales. Based on the original structure, we improved and replaced the convolutional layer with 
the remaining blocks. To produce object masks, three refinement blocks, a softmax layer, and 
a final convolutional layer were included in our decoder. 

 
Fig. 3. Overview of the proposed network. The network is made up of two encoder-sharing 

parameters, a decoder, and a global convolution block. The specific composition of each structural 
block is shown below. 

4.1 Details of Training 
Training of 𝒇𝒇(𝜽𝜽). We assume that there are internal changes in the object in the video, and 
the standard loss function is insufficient for VOS. In other words, if the identity of the sample 
is obvious, then a triple loss function is designed. This is not the case for VOS because an 
object may have many portions, and each component may be different. Therefore, it is an 
additional constraint to pull these samples very close together and can be detrimental to 
learning a robust metric. We changed the typical triplet loss to conform to the task of video 
target segmentation. We officially call an anchor sample, 𝑥𝑥𝑎𝑎. 𝑥𝑥𝑝𝑝 ∈ 𝑝𝑝 is a positive sample in a 
positive sample pool of 𝑝𝑝. Likewise, 𝑥𝑥𝑛𝑛represents a negative sample pool, and 𝛾𝛾 represents a 
negative sample pool. The standard triplet loss makes a correct probability large enough to 
increase the advantage and avoid ambiguity. Therefore, we only push the smallest negative 
point away from the smallest positive point by modifying the loss function. The loss function 
is defined as: 

∑ min
𝑥𝑥𝑝𝑝∈𝑝𝑝

‖𝑓𝑓(𝑥𝑥𝑎𝑎) − 𝑓𝑓(𝑥𝑥𝑝𝑝)‖22𝑥𝑥𝑎𝑎∈𝐴𝐴 − min
𝑥𝑥𝑛𝑛∈𝛾𝛾

‖𝑓𝑓(𝑥𝑥𝑎𝑎)− 𝑓𝑓(𝑥𝑥𝑛𝑛)‖22 + 𝛼𝛼                   (13) 
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Among them, 𝛼𝛼  is a balance variable that controls the distance between negative and 
positive samples, and the anchor is defined as 𝐴𝐴. We have two pools for each anchor sample, 
𝑥𝑥𝑎𝑎: one is the positive sample pool, 𝑃𝑃, the label of which is the same as the anchor sample; 
the other is the negative sample pool, 𝛾𝛾. We selected the sample closest to the anchor point of 
each pool and compared the negative and positive distances. Intuitively, the loss function 
brings the nearest positive factors closer and pushes the nearest negative factor farther away. 

The anchor points are sampled from one frame, and the pixels in the other two frames are 
linked together. The positive pool, 𝑃𝑃, forms pixels with the same mark as the anchor point, 
and the remainder forms the negative pool, 𝛾𝛾. Note that to have temporal variation, the pool is 
sampled from two different frames; to prevent bad samples, we do not select pixels from 
anchor frames in pools. 

One frame was used as an anchor point in each iteration, and forward passing was carried 
out on three randomly selected frames. To sample 256 anchor samples, we then used the 
anchor frame, and the positive and negative pools were both foreground and background pixels 
in the other two frames. According to (13), we calculated the loss, and the network was trained 
end-to-end. 
Training of 𝒇𝒇𝝉𝝉(∙). We used patches of 256 × 256 and 256 × 512 to perform pretraining and 
then go on to fine-tuning. In the fine-tuning period, the number of repetitions was set to five. 
We used a random affine transformation to expand all of the training samples. We used the 
Adam optimizer for all of our experiments with a fixed learning rate of 𝑒𝑒−5. With a single 
NVIDIA GeForce 1060 GPU, fine-tuning required approximately three days, and pretraining 
took approximately five days. 

Our network was first trained on the static image datasets and then fine-tuned on the VOS 
datasets. First, we used an image dataset with instance object masks (PascalVOC) to simulate 
training samples. Specifically, we used the method of random affine transformation to further 
transform the mask of the target frame. We randomly processed a training sample from each 
generated image that contained at least 50% of the object. After pretraining, we performed 
fine-tuning training on the VOS dataset. Through fine-tuning training in real VOS scenarios, 
our model learned how to segment accurately after adapting to changes in the appearance and 
motion of the object. 

5. Experimental Results 

5.1 Ablation Study 
We performed ablation studies using the DAVIS2016 dataset. We evaluated the accuracy of 
the model using the contour accuracy (ℱ) and regional similarity (𝐼𝐼𝐼𝐼𝐼𝐼(𝒥𝒥)). Table 1 lists the 
results of the proposed model for various configurations. It is clear that the model can produce 
better output results and is more robust when it contains higher-order energy. 
Table 1. The ablation study on DAVIS 2016. UP represents there is the unary potential in the model 
only. UP&PP represents there is not the high order potential in the model. UP&PP&HOP represents 

there is high order potential in the model. 
Approach 

 
𝑰𝑰𝑰𝑰𝑰𝑰(𝓙𝓙) 𝓕𝓕 

Mean Recall Delay Mean Recall Delay 
UP 81.5 - 5.0 82.7 - - 

UP&PP 83.6 - 7.8 85.3 - - 
UP&PP&HOP 84.3 95.3 13.7 86.2 93.2 15.6 
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In our experiments, when only performing the unary potential (UP), we set 𝛼𝛼 = 𝛽𝛽 = 0. 
When only performing pairwise and unary potentials (PP&UP), we set 𝛽𝛽 = 0 . When 
performing pairwise, unary, and high-order potentials (UP&PP&HOP), we set  𝛼𝛼 = 𝛽𝛽 = 1. 

It can be seen from the results that the higher-order potential proposed in this study 
significantly improves the accuracy of the results. Specifically, without the higher-order 
potential based on the global result, the segmentation results of a single frame are often 
disturbed by local information. In particular, when the color difference between the foreground 
and background is small, the foreground object and background are often confused, resulting 
in false segmentation. However, when global higher-order potential constraints are added, the 
algorithm can optimize the segmentation results of each frame by conducting feature statistics 
on the entire video. Because this method uses global information to optimize local information, 
the proposed model has strong robustness against random noise, irregular motion, and small 
differences in foregrounds and backgrounds, as shown in Fig. 4. 

 
Fig. 4. Results of the ablation study conducted at DAVIS 2016. The result is improved by adding 

pairwise potential energy (PP) to unitary potential energy (UP). In addition to the first two potential 
energies (UP and PP), the higher-order potential energy (HOP) based on global consistency constraint 

are added to significantly improve experimental results. 

5.2 State-of-the-art Comparison 

 
Fig. 5. Comparison of accuracy and efficiency on DAVIS-2016. 

 

Ground Truth UP UP+PP UP+PP+HOP 
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We conducted a comparative experiment on the DAVIS2016 dataset to compare the proposed 
model with other models. It contains a total of 50 high-resolution (480P) video sequences, and 
contains many challenging segmentation scenarios (appearance changes, fast motion, and 
occlusion). What's more, the proposed method also achieves a competitive performance in 
terms of accuracy and efficiency as shown in Fig. 5. 

Table 2. The results of proposed model on the dataset of DAVIS 2016 and compared with the 
benchmark method published on DAVIS 2016. 

 
Approach 

 
Global Mean 

𝑰𝑰𝑰𝑰𝑰𝑰(𝓙𝓙) 𝓕𝓕 
Mean Recall Delay Mean Recall Delay 

FCP [17] 53.8 58.4 71.5 -2.0 49.2 49.5 -1.1 
BVS [16] 59.4 60.0 66.9 28.9 58.8 67.9 21.3 
OFL [14] 65.7 68.0 75.6 26.4 63.4 70.4 27.2 
PML [27] 66.35 70.2 86.3 11.2 62.5 73.2 14.7 
SiamMask 

[13] 
69.75 71.7 86.8 3.0 67.8 79.8 2.1 

CTN [28] 71.4 73.5 87.4 15.6 69.3 79.6 12.9 
SFL [29] 76.05 76.1 90.6 12.1 76.0 85.5 10.4 
PLM [30] 77.4 75.5 89.6 8.5 79.3 93.4 7.8 
MSK [22] 77.55 79.7 93.1 8.9 75.4 87.1 9.0 

OSVOS [6] 80.2 79.8 93.6 14.9 80.6 92.6 15.0 
RGMP [31] 81.75 81.5 91.7 10.9 82.0 90.8 10.1 
CIM [20] 84.2 83.4 94.9 12.3 85.0 92.1 14.7 
STM [32] 89.4 88.7 97.4 5.0 90.1 95.2 4.2 

Ours 85.25 84.3 95.3 13.7 86.2 93.2 15.6 

Table 3. The results of proposed model on the dataset of DAVIS 2016 and compared with the 
benchmark method published on DAVIS 2016. 

Approach DAVIS  2016 
(MIOU%) 

YouTube 
(MIOU%) 

CIM [20] 83.4 78.4 
OSVOS [6] 79.8 78.3 
OFL [14] 68.0 77.6 
MSK [22] 79.7 72.6 
STV [33] 73.6 - 
VPN [18] 70.2 - 

OnAVOS [24] 86.16 77.4 
Ours 84.3 79.2 

To make our approach more convincing, we compared our model with other models on the 
YouTube dataset, and the results show that our model obtained state-of-the-art results among 
similar algorithms. Because there are few cases of object occlusions and object appearance 
changes in the YouTube dataset, the algorithm based on temporal information propagation can 
often obtain satisfactory results easily. Although the DAVIS2016 dataset contains very 
challenging segmentation scenarios (occlusions and complex deformations), most foreground 
objects can be correctly identified and segmented by using the CNN-based approach. Thanks 
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to the proposed higher-order constraint, the pixels that have similar semantic features are 
specified as soft preferences for assignment with the same label (foreground or background). 
This global clique is the key to our approach and it ensures long-term appearance consistency 
during segmentation. By taking advantage of both the probabilistic graphical model and a 
CNN, our model achieves competitive results on these datasets, as shown in Table 2 and Table 
3.  

Fig. 6. Comparison of results. By comparing the results of the proposed algorithm with those of 
other algorithms, it can be seen from the experimental results that the proposed algorithm achieves 
competitive performance and satisfactory results in some very challenging segmentation scenarios. 

5.3 Qualitative Evaluation 
Fig. 6 shows several qualitative examples of our segmentation results and a comparison with 
some excellent algorithms on the DAVIS 2016 dataset. The above experimental results show 
that our model can produce satisfactory segmentation results in challenging scenes with object 

Ground Truth SiamMask CIM Our 
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occlusions, object appearance changes, fast motion, and small differences between the 
background and the foreground object. Even though the full object appearance is not revealed 
in the first frame, our model successfully captures the target information. Inevitably, however, 
the method cannot fully capture some detailed parts such as the human leg, or the foot of the 
rider and back seat of motorbike. This is most likely because the missed information is not 
detected on the object in first frame but is highly similar to that of other distractor objects. Fig. 
7 shows some failure cases. This may be because the instances have similar appearances and 
are close to each other, resulting in excessively proximate embeddings. Moreover, the object 
has a blurry appearance owing to its transparent appearance and fast motion. 

5.4 Limitations 
Fig. 7 shows typical examples of incorrect segmentation: the small difference between the 
background and the foreground object causes pixels to be incorrectly labeled. The difficulty 
of this method lies in the optimal solution of high-order energy equations, and it is difficult to 
use a unified framework to deal with such problems. In general, the methods for solving high-
order energy equations can be summarized as follows: The first method is to equate higher-
order functions to lower-order functions (usually quadratic energy functions) through 
equivalent transformations, and then use the standard graph cut algorithm to solve. Another 
method is to approximate the high-order energy equation to the second-order energy equation, 
and then use the standard graph cut algorithm to solve. Our method is the latter. In future 
research, we hope to explore a more efficient algorithm to solve higher-order energy equations 
without adding any variables. At the same time, a bi-layered parallel training architecture [34] 
could be considered for acceleration.  

   

   
Fig. 7. Typical failed experiment results. The top image is the ground truth, and the bottom image is 

the result of our model. 

6. Conclusion 
In this study, we proposed an efficient and effective higher-order CRF model for VOS. A 
higher-order energy equation was established to model the task of VOS. The unary potential 
energy and higher-order potential energy of the model were modeled by using a CNN. To 
solve the problem of optimization in the MRF, we decomposed a higher-order energy equation 
into two parts and optimized it by using a traditional iterative method. Finally, a standard graph 
cut algorithm was used to complete the segmentation. We performed quantitative and 
qualitative evaluations on multiple datasets, and the proposed model achieved competitive 
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results. However, the accuracy and speed of the proposed approach cannot reach the real-time 
requirement for some application scenarios. To solve this problem, the next step is to add all 
the previous frame information to predict the current frame, as well as the computing cost and 
memory usage issues caused by it.  
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