Browse > Article
http://dx.doi.org/10.3807/JOSK.2008.12.2.112

Mode Propagation in X-Ray Waveguides  

Choi, J. (Photonics Lab, Department of Physics, Dankook University)
Jung, J. (Photonics Lab, Department of Physics, Dankook University)
Kwon, T. (Photonics Lab, Department of Physics, Dankook University)
Publication Information
Journal of the Optical Society of Korea / v.12, no.2, 2008 , pp. 112-117 More about this Journal
Abstract
Single-mode propagation conditions of X-ray waveguides are investigated by numerical calculations in order to understand the importance of waveguide design parameters, such as core thickness and the optical constants of waveguide materials, on the transmission and coherence properties of the waveguide. The simulation code for mode analyzing is developed based on a numerical solution of the parabolic wave equation. The initial boundary value problem is solved numerically using a finite-difference scheme based on the Crank-Nicolson scheme. The E-field intensities in a core layer are calculated at an X-ray energy of 8.0 keV for air and beryllium(Be) core waveguides with different cladding layers such as Pt, Au, W, Ni and Si to determine the dependence on waveguide materials. The highest E-field intensity radiated at the exit of the waveguide is obtained from the Pt cladded beryllium core with a thickness of 20 nm. However, the intensity from the air core waveguide with Pt cladding reaches 64% of the Be-Pt waveguide. The dependence on the core thickness, which is the major parameter used to generate a single mode in the waveguide, is investigated for the air-Pt, and Be-Pt waveguides at an X-ray energy of 8.0 keV. The mode profiles at the exit are shown for the single mode at a thickness of up to 20 nm for the air-Pt and the Be-Pt waveguides.
Keywords
X-ray waveguide; single mode; channel waveguide; Finite-difference method;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 C. G. Schroer, O. Kurapova, J. Patommel, P. Boye, J. Feldkamp, and B. Lengeler, M. Burghammer, C. Riekel, L. Vincze, A. van der Hart, and M. Kuchler, ”Hard x-ray nanoprobe based on refractive x-ray lenses,” Appl. Phys. Lett., vol. 87, pp. 124103-12410, 2005   DOI   ScienceOn
2 Gung-Chian Yin, Yen-Fang Song, Mau-Tsu Tang, Fu-Rong Chen, Keng S. Liang, Frederick W. Duewer, Michael Feser, Wenbing Yun, and Han-Ping D. Shieh, “30 nm resolution x-ray imaging at 8 keV using third order diffraction of a zone plate lens objective in a transmission microscope,” Appl. Phys. Lett., vol. 89, pp. 221-122, 2006   DOI   ScienceOn
3 Christian G. Schroer, “Focusing hard x rays to nanometer dimensions using Fresnel zone plates,” Phys. Rev., B74, pp.033405-033408, 2006   DOI   ScienceOn
4 F. Pfeitter, T. Salditt, P. Hoghoj, I. Anderson, and N. Schell, “X-ray Waveguides with Multiple Guiding Layers,” Phys. Rev., vol. B62, pp. 16939-16943, 2000
5 Jianwei Miao, Pambos Charalambous, Janos Kirz and David Sayre, “Extending the methodology of X-ray crystallography to allow imaging of micrometre- sized non-crystalline specimens,” Nature, vol. 400, pp. 342-344, 1999   DOI
6 M. J. Bedzyk, G. M. Bommarito and J. S. Schildkraut “X-ray Standing Waves at a Reflecting Mirror Surface,” phys. Rev. Lett., vol. 62, pp. 1376-1379, 1989   DOI   ScienceOn
7 Christian Fuhse, X-ray Waveguides and Waveguidebased Lensless Imaging, (Dissertation, Georg-August University, Germany, 2006.)
8 J. W. Thomas, Numerical Partial Differential Equations, (Springer-Verlag, New York, 1997.)
9 H. C. Kang, J. Maser, G. B. Stephenson, C. Liu, R. Conley, A. T. Macrander, and S. Vogt, “Nanometer Linear Focusing of Hard X Rays by a Multilayer Laue Lens,” Phys. Rev. Lett., vol. 96, pp. 127401- 127404, 2006   DOI   ScienceOn
10 Weilun Chao, Bruce D. Harteneck, J. Alexander Liddle, Erik H. Anderson and David T. Attwood, “Soft X-ray microscopy at a spatial resolution better than 15 nm,” Nature, vol. 435, pp. 1210-1213, 2005   DOI   ScienceOn
11 F. Pfeiffer, C. David, J. F. van der Veen, C. Bergemann, “Nanometer focusing properties of Fresnel zone plates described by dynamical diffraction theory,” Phys. Rev., vol. B73, pp. 245331-245340, 2006
12 J. Buschbeck,1,2 I. Lindemann,1,2 L. Schultz,1,2 and S. Fahler1,“Growth, structure, and texture of epitaxial Fe100.xPdx films deposited on MgO(100) at room temperature: An x-ray diffraction study,” Phys. Rev., vol.B76, pp. 205421-205428, 2007
13 D. H. Bilderback, S. A. Hottman, and D. J. Thiel, “Nanometer Spatial Resolution Achieved in Hard X-ray Imaging and Lave Diffraction Experiments.” Science, vol. 263, pp. 201-203, 1994   DOI
14 Y. P. Feng, S.K. Sinha, E. E. Fullerton, G. Grubel, D. Abemathy, D. P. Siddons, and J. B. Hastings, “X-ray Fraunhofer Diffraction Patterns from a Thin-Film Waveguide,” Appl. phys. Lett., vol. 67, pp. 3647-3649, 1995   DOI
15 Y. Suzuki, N. Kamijo, S. Tamura, K. Honda, A. Takeuchi, S. Yamamoto, H. Sugiyama, K. Ohsumi, and M. Ando, ”Hard X-ray Micro-beam Experiment at the Tristan Main Ring Test Beam-line of the KEK,” J. Synchrotron Radiat., vol. 4, pp. 60-63, 1997   DOI   ScienceOn
16 C. Brgemann, H. Keymeulen, and J. F. Van der Veen, “Focusing X-ray Beams to Nanometer Dimensions,” Phys. Rev. Lett., vol. 91, pp. 204801-204805, 2003   DOI   ScienceOn
17 F. Pfeiffer, C. David, M. Burghammer, C. Rickel, and T. Salditt, “Two-Dimensional X-ray Waveguides and Point Sources,” Science, vol. 297, pp. 230-234, 2002   DOI   ScienceOn
18 J. Wang, M. J. Beyk and M. Caffrey, “Resonance- Enhanced X-rays in Thin-films,” Science, vol. 258, pp. 775-778, 1992   DOI
19 G. G. Schroer, and B. Lengeler, “Focusing Hard X-ray to Nanometers Dimensions by Adiabatically Focusing Lenses,” Phys. Rev. Lett., vol. 94, pp.1-4, 2005   DOI   ScienceOn
20 A. G. Michette. S. J. Pfauntsch, A. Erko, A, and A. Svintsov,” Nanometer Focusing of X-ray with Modified Reflection Zone Plates,” Opt., vol. 245, pp. 349-253, 2005   DOI   ScienceOn