• Title/Summary/Keyword: Empirical distribution

Search Result 2,219, Processing Time 0.027 seconds

Power Comparison between Methods of Empirical Process and a Kernel Density Estimator for the Test of Distribution Change (분포변화 검정에서 경험확률과정과 커널밀도함수추정량의 검정력 비교)

  • Na, Seong-Ryong;Park, Hyeon-Ah
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.2
    • /
    • pp.245-255
    • /
    • 2011
  • There are two nonparametric methods that use empirical distribution functions and probability density estimators for the test of the distribution change of data. In this paper we investigate the two methods precisely and summarize the results of previous research. We assume several probability models to make a simulation study of the change point analysis and to examine the finite sample behavior of the two methods. Empirical powers are compared to verify which is better for each model.

The Effect of Investing into Distribution Information and Communication Technologies on Banking Performance the Empirical Evidence from an Emerging Country

  • PHAN, Anh;LU, Chi Huu;HOANG, Lam Xuan;NGUYEN, Phuong Minh
    • Journal of Distribution Science
    • /
    • v.20 no.6
    • /
    • pp.43-56
    • /
    • 2022
  • Purpose: This study aims to investigate the impact of investing into technology development on banking performance in an emerging country. Research design, data and methodology: Based on the data of 12 commercial banks listed in Vietnam from 2011 to 2019 and performing multivariable regression analyses as well as conducting a variety of robustness tests, we carry out the empirical investigation to discover this impact. Results: Our empirical evidence shows that these spending help to improve significantly performance of banks. Particularly, the technology expenditures have positive effect on the net interest margin and the non-interest income in which the level of influence on the latter is relatively remarkable in comparison with the former. At the same time, the result does not support the view that increasingly spending on technology may lead banks to face the risk of instability. Conclusions: Overall, our empirical analysis indicates that increasing investment into distribution information and communication technologies will help to enhance business strategies of banks and thus we advocate the bright side of technology development and digitalization in banking sector. We believe that the research is useful for both managers, regulators and policy makers in Vietnam as well as in countries having similar financial structure.

Empirical Bayes Nonparametric Estimation with Beta Processes Based on Censored Observations

  • Hong, Jee-Chang;Kim, Yongdai;Inha Jung
    • Journal of the Korean Statistical Society
    • /
    • v.30 no.3
    • /
    • pp.481-498
    • /
    • 2001
  • Empirical Bayes procedure of nonparametric estiamtion of cumulative hazard rates based on censored data is considered using the beta process priors of Hjort(1990). Beta process priors with unknown parameters are used for cumulative hazard rates. Empirical Bayes estimators are suggested and asymptotic optimality is proved. Our result generalizes that of Susarla and Van Ryzin(1978) in the sensor that (i) the cumulative hazard rate induced by a Dirichlet process is a beta process, (ii) our empirical Bayes estimator does not depend on the censoring distribution while that of Susarla and Van Ryzin(1978) does, (iii) a class of estimators of the hyperprameters is suggested in the prior distribution which is assumed known in advance in Susarla and Van Ryzin(1978). This extension makes the proposed empirical Bayes procedure more applicable to real dta sets.

  • PDF

Empirical Bayes Test for the Exponential Parameter with Censored Data

  • Wang, Lichun
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.2
    • /
    • pp.213-228
    • /
    • 2008
  • Using a linear loss function, this paper considers the one-sided testing problem for the exponential distribution via the empirical Bayes(EB) approach. Based on right censored data, we propose an EB test for the exponential parameter and obtain its convergence rate and asymptotic optimality, firstly, under the condition that the censoring distribution is known and secondly, that it is unknown.

Bayes and Empirical Bayes Estimation of the Scale Parameter of the Gamma Distribution under Balanced Loss Functions

  • Rezaeian, R.;Asgharzadeh, A.
    • Communications for Statistical Applications and Methods
    • /
    • v.14 no.1
    • /
    • pp.71-80
    • /
    • 2007
  • The present paper investigates estimation of a scale parameter of a gamma distribution using a loss function that reflects both goodness of fit and precision of estimation. The Bayes and empirical Bayes estimators rotative to balanced loss functions (BLFs) are derived and optimality of some estimators are studied.

Parametric Empirical Bayes Estimators with Item-Censored Data

  • Choi, Dal-Woo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.8 no.2
    • /
    • pp.261-270
    • /
    • 1997
  • This paper is proposed the parametric empirical Bayes(EB) confidence intervals which corrects the deficiencies in the naive EB confidence intervals of the scale parameter in the Weibull distribution under item-censoring scheme. In this case, the bootstrap EB confidence intervals are obtained by the parametric bootstrap introduced by Laird and Louis(1987). The comparisons among the bootstrap and the naive EB confidence intervals through Monte Carlo study are also presented.

  • PDF

ON THE GOODNESS OF FIT TEST FOR DISCRETELY OBSERVED SAMPLE FROM DIFFUSION PROCESSES: DIVERGENCE MEASURE APPROACH

  • Lee, Sang-Yeol
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.6
    • /
    • pp.1137-1146
    • /
    • 2010
  • In this paper, we study the divergence based goodness of fit test for partially observed sample from diffusion processes. In order to derive the limiting distribution of the test, we study the asymptotic behavior of the residual empirical process based on the observed sample. It is shown that the residual empirical process converges weakly to a Brownian bridge and the associated phi-divergence test has a chi-square limiting null distribution.

Nonparametric empirical bayes estimation of a distribution function with respect to dirichlet process prior in case of the non-identical components (분포함수의 추정및 응용에 관한연구(Dirichlet Process에 의한 비모수 결정이론을 중심으로))

  • 정인하
    • The Korean Journal of Applied Statistics
    • /
    • v.6 no.1
    • /
    • pp.173-181
    • /
    • 1993
  • Nonparametric empirical Bayes estimation of a distribution function with respect to dirichlet process prior is considered when sample sizes are varying from component to component. Zehnwirth's estimate of $\alpha$(R) is modified to be used in our empirical Bayes problem with non-identical components.

  • PDF

On the Residual Empirical Distribution Function of Stochastic Regression with Correlated Errors

  • Zakeri, Issa-Fakhre;Lee, Sangyeol
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.1
    • /
    • pp.291-297
    • /
    • 2001
  • For a stochastic regression model in which the errors are assumed to form a stationary linear process, we show that the difference between the empirical distribution functions of the errors and the estimates of those errors converges uniformly in probability to zero at the rate of $o_{p}$ ( $n^{-}$$\frac{1}{2}$) as the sample size n increases.

  • PDF

A View on the Validity of Central Limit Theorem: An Empirical Study Using Random Samples from Uniform Distribution

  • Lee, Chanmi;Kim, Seungah;Jeong, Jaesik
    • Communications for Statistical Applications and Methods
    • /
    • v.21 no.6
    • /
    • pp.539-559
    • /
    • 2014
  • We derive the exact distribution of summation for random samples from uniform distribution and then compare the exact distribution with the approximated normal distribution obtained by the central limit theorem. To check the similarity between two distributions, we consider five existing normality tests based on the difference between the target normal distribution and empirical distribution: Anderson-Darling test, Kolmogorov-Smirnov test, Cramer-von Mises test, Shapiro-Wilk test and Shaprio-Francia test. For the purpose of comparison, those normality tests are applied to the simulated data. It can sometimes be difficult to derive an exact distribution. Thus, we try two different transformations to find out which transform is easier to get the exact distribution in terms of calculation complexity. We compare two transformations and comment on the advantages and disadvantages for each transformation.