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ON THE GOODNESS OF FIT TEST FOR DISCRETELY
OBSERVED SAMPLE FROM DIFFUSION PROCESSES:

DIVERGENCE MEASURE APPROACH

Sangyeol Lee

Abstract. In this paper, we study the divergence based goodness of
fit test for partially observed sample from diffusion processes. In order
to derive the limiting distribution of the test, we study the asymptotic
behavior of the residual empirical process based on the observed sample.
It is shown that the residual empirical process converges weakly to a
Brownian bridge and the associated phi-divergence test has a chi-square
limiting null distribution.

1. Introduction

The diffusion process has long been popular in analyzing random phenom-
ena occurring in various fields such as finance, engineering, physical and med-
ical sciences. As a basic reference, we refer to Karatzas and Shreve [5] and
Shiryayev [20]. As the application of diffusion processes to real situations, es-
pecially to financial market, is versatile, much attention has been paid to sta-
tistical inference for diffusion processes and many sophisticated methods have
been developed by researchers. For a general review, we refer to Prakasa Rao
[18] and Kutoyants [7]. Past experience suggests that time series models such
as general autoregressive conditional heteroscedastic (GARCH) models, which
are the most popular in the financial time series context, are not well fitted to
financial time series due to structural changes governed by the change of finan-
cial policies and social panic events. This phenomenon is frequently observed
in most financial time series data with high volatility: see, for instance, Lee,
Tokutsu, and Maekawa [13] who empirically verified, through the CUSUM test,
that most stock prices of Nikei 225 suffer from parameter changes when the
underlying model of the data is assumed to follow a GARCH(1,1) model. With
regard to the parameter change test for time series models, we refer to Lee,
Ha, Na, and Na [8], Lee and Na [10], Lee, Nishiyama, and Yoshida [11], and
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the articles cited in these papers. Since in general the stability of time series
models is not guaranteed as mentioned above, instead of diffusion processes,
researchers often consider using alternatives such as jump diffusion processes
and Lévy processes: see Barndorff-Nielsen, Mikosch and Resnick [1], Shoutens
[19] and Cont and Tankov [4]. Hence, in actual practice, it is very important
to check whether time series follow diffusion or other processes.

In this paper, motivated by this viewpoint, we consider the goodness of fit
test for diffusion processes. In particular, we concentrate on the phi-divergence
test. The divergence measures are used as indices to similarity or dissimilarity
between populations. They are also used either to measure mutual information
concerning two r.v.’s and to construct goodness of fit tests. The most classic
discrepancy is the Kullback-Leibler discrepancy while another important fam-
ily of measures is the phi-divergence known as Csiszar’s family of divergence
measures of information on divergence methods: see Read and Cressie [17] and
Pardo [16]. Recently, Lee and Karagrigoriou [9] rediscovered that there is a
strong link between the phi-divergence test and empirical process, and verified
that the asymptotic behavior of the phi-divergence test can be analyzed by
studying that of the empirical process. In particular, they showed that the as-
ymptotic results on the residual empirical process can be used for deriving the
limiting distribution of the phi-divergence tests for autoregressive time series
models.

Here, we employ the phi-divergence test constructed with the residuals ob-
tained based on discretely observed sample from diffusion processes. We do
this because if the data is generated from a pure diffusion process, the resid-
uals obtained from the sampled observations should behave like normal r.v.’s.
Then the whole testing procedure is reduced to the normality test for nearly
i.i.d. observations. Since the phi-divergence test is strongly related to the resid-
ual empirical process, we study its asymptotic behavior in diffusion processes,
which itself may be of an independent interest. In fact, the residual empirical
process in time series models has been extensively studied by many authors.
For instance, we refer to Lee and Wei [15], who deal with infinite order au-
toregressive models and unstable models, Boldin [2] and Lee and Taniguchi
[12], who handled GARCH models, Lee and Wee [14], who consider the diffu-
sion process with a constant dispersion component, and papers cited in those
articles.

In Section 2, it is shown that under regularity conditions, the residual em-
pirical process converges weakly to a Brownian bridge, and subsequently, by
using the link between the residual empirical process and phi-divergence test,
the latter has a chi-square limiting null distribution. Based on this result, one
can easily perform a goodness of fit test in actual practice. Although we do
not carry out an empirical study here, it is well known that the phi-divergence
test performs adequately in other situations, and the same result is anticipated
in our set-up. Finally, in Section 3, we provide the proof for the main theorem
addressed in Section 2.
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2. Main results

Let us consider the stochastic differential equation

dXt = a(Xt; θ)dt + b(Xt; σ)dWt, X0 = x0, t ≥ 0,(2.1)

where (θ, σ) is a p + q-dimensional unknown parameter, a, b are known real
valued functions, and W = {Wt; t ≥ 0} is a stochastic process that allows
Equation (2.1) to have a unique strong solution. Further, we assume that

(A1) There exist constants C, m > 0 such that for any (θ, σ) and x, y,

|a(x; θ)− a(y; θ)|+ |b(x; σ)− b(y; σ)| ≤ C|x− y|,
sup

θ′∈Nθ

||ȧ(x; θ
′
)||+ sup

θ′∈Nσ

||ḃ(x; σ
′
)|| ≤ C(1 + |x|m),

sup
σ′∈Nθ

||ä(x; θ
′
)||+ sup

σ′∈Nσ

||b̈(x; σ
′
)|| ≤ C(1 + |x|m),

where ȧ = ∂a/∂θ, ä = ∂a2/∂θ2, ḃ = ∂b/∂σ, ä = ∂a2/∂σ2, and Nθ and Nσ are
open neighborhoods of θ and σ.

(A2) infx,σ b(x, σ) > 0.
Here we consider the problem of testing the following hypotheses:

H0 : W is a standard Winer process vs. not H0

via using the phi-divergence test introduced in Read and Cressie [17] and Pardo
[16]. To task this, we study the asymptotic behavior of the residual empirical
process constructed based on discreetly observed sample from the diffusion
process in (2.1), say, Xti , ti = ihn, i = 1, . . . , n, where {hn} is a sequence of
positive real numbers such that hn → 0 and nhn →∞.

In what follows, we assume
(A3) Under H0, supt E|Xt|γ < ∞ for all γ > 0.
Further, we assume
(A4) Under H0, there exists an estimator (θ̂n, σ̂n) of (θ, σ) such that

(nhn)1/2(θ̂n − θ) = OP (1) and n1/2(σ̂n − σ) = OP (1),

and
(A5) nh2

n → 0 and (nhn)1/2/ log n →∞ as n →∞.
Sufficient conditions for (A4) can be found in Kessler [6], which will be

implicitly assumed without specification.
By using the Euler approximation, we can express

Xti −Xti−1 ' hna(Xti−1 ; θ) + b(Xti ; σ)(Wti −Wti−1).

In view of this, we define the residuals as

η̂ni = {Xti −Xti−1 − hna(Xti−1 ; θ̂n)}/b(Xti−1 ; σ̂n)h1/2
n .(2.2)
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Since the phi-divergence test is strongly related to the residual empirical pro-
cess, we consider the residual empirical process defined by

Ŷn(x) =
1√
nh

nh∑

i=1

{I(η̂ni ≤ x)− Φ(x)}, x ∈ R,(2.3)

where nh is the largest integer that does not exceed nhn. Then we have the
following result, the proof of which is provided in Section 3.

Theorem 2.1. Let
ηni =

Wti
−Wti−1√

hn

.

Assume that (A1)-(A5) hold. Then, as n →∞,

Ŷn(x) =
1√
nh

nh∑

i=1

{I(ηni ≤ x)− Φ(x)}+ ξn(x),

where supx |ξn(x)| = oP (1). Thus, Yn(Φ−1(u)) converges weakly to a Brownian
bridge W o(u).

Remark. Usually, the estimator of scale parameter affects the limiting distribu-
tion of the residual empirical process. In fact, this phenomenon can be found
in GARCH processes (cf. Lee and Taniguchi [12]). In our case, however, the
estimation effect disappears as seen in Theorem 2.1.

Lee and Wee [14] established the weak convergence of the residual empir-
ical process to a Brownian bridge when the diffusion process has a constant
dispersion: many well known stochastic differential equation (SDE) models in
finance like the Black-Scholes model can be transformed to SDE models with a
constant dispersion. In this case, one can even verify that their result holds for
nh = nhβ with 0 < β < 1 by virtue of (3.2) as long as nh1+β → ∞, although
we would not provide a detailed proof for this. An advantage of using this nh

is that the time horizon nh · h diverges to ∞. This may not be possible for a
general dispersion case.

Now, we introduce the phi-divergence test based on the residuals η̂ni. Let Λ
be a class of continuously twice differentiable real valued functions ϕ defined on
R+ such that ϕ(1) = 0, ϕ

′′
(1) 6= 0, 0ϕ(0/0) = 0 and 0ϕ(p/0) = limu→∞ ϕ(u)/u.

For M ≥ 2, ϕ ∈ Λ, and the partition Ai = (xi−1, xi], where −∞ = x0 < x1 <
· · · < xM = ∞ with Φ(xi) = i/M , the ϕ-divergence test based on the residuals
is given by

T̂ϕ
n =

2n

ϕ′′(1)
Dϕ(p, p̂n),

where p = (p1, . . . , pM )
′
and p̂n = (p̂n1, . . . , p̂nM )

′
with p̂ni = n−1

∑n
j=1 I((i−

1)/M < Φ(η̂nj) ≤ i/M), and Dϕ is a real valued function on RM × RM , such
that for all M × 1 vectors p = (p1, . . . , pM )

′
and q = (q1, . . . , qM )

′
, Dϕ(p, q) =∑M

i=1 piϕ(qi/pi). In particular, when ϕ(u) = uλ+1−u
λ(λ+1) with λ = −1/2, 0, 2/3, 1,
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the phi-divergence tests are called the Freeman-Tukey, likelihood ratio, Cressie-
Read, and chi-square tests, respectively.

If we put for s ∈ [0, 1],

Ŷn(s) =
1√
nh

nh∑

j=1

{I(Φ(η̂nj) ≤ s)− s},

Yn(s) =
1√
nh

nh∑

j=1

{I(Φ(ηnj) ≤ s)− s},

we can see that

p̂ni = n
−1/2
h {Ŷn(i/M)− Ŷn((i− 1)/M)}+ 1/M.

Since Ŷn(s) = Ŷn(Φ−1(s)), by Theorem 2.1,

(p̂ni − pi)2 = n−1
h {Yn(i/M)− Yn((i− 1)/M) + ζni}2 = OP (n−1

h ),

where sup1≤i≤M |ζni| = oP (1). Hence, in view of the arguments of Pardo [16,
pp. 261–262], we can have

T̂φ
n = M

M∑

i=1

{Yn(i/M)− Yn((i− 1)/M)}2 + oP (1).

Subsequently, by Theorem 3.1 of Pardo [16], we have the following result.

Theorem 2.2. Under H0 and the conditions in Theorem 2.1, as n →∞,

T̂φ
n

d→ χ2
M−1,(2.4)

where χ2
M−1 denotes a r.v. with a chi-square distribution with M − 1 degrees

of freedom.

Given a significance level α ∈ (0, 1), we reject H0 if Tφ
n ≥ χ2

M−1(α) where
χ2

M−1(α) is the number such that P (χ2
M−1 ≥ χ2

M−1(α)) = α.

3. The proof of Theorem 2.1

In this section, we prove Theorem 2.1. Put

∆ni =
∫ ti

ti−1

{a(Xs; θ)− a(Xti−1 ; θ)}ds +
∫ ti

ti−1

{b(Xs; θ)− b(Xti−1 ; θ)}dWs,

dni = a(Xti−1 ; θ̂n)− a(Xti−1 ; θ).

Note that ∆ni can be viewed as a model bias in the regression model in (2.1).
By using (A1), (A2), the arguments in the proof of Lemma 3.4.2 of Prakara
Rao [18, p. 156], and the martingale moment inequality in Equation (3.27) of
Karatzas and Shreve [5, p. 163], we can easily see that for each k ≥ 1, there
exists some Ck > 0 depending only upon k with

E|Xt −Xs|2k ≤ Ck|t− s|k.(3.1)
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Subsequently, by using Hölder’s inequality, we can have

E

∣∣∣∣∣
∫ ti

ti−1

{a(Xs; θ)− a(Xti−1 ; θ)}ds

∣∣∣∣∣

2k

= O(h3k
n ).(3.2)

Further, we can verify that

E

∣∣∣∣∣
∫ ti

ti−1

{b(Xs;σ)− b(Xti−1 ; σ)}dWs

∣∣∣∣∣

2k

= O(h2k
n ).(3.3)

Combining (3.2) and (3.3), we have

E|∆ni|2k = O(h2k
n ).(3.4)

We express that Yn(x) = In(x) + IIn(x) + IIIn(x), where

In(x) =
1√
nh

nh∑

i=1

{I(ηni ≤ x)− Φ(x)},

IIn(x) =
1√
nh

nh∑

i=1

{
Φ

(
b(Xti−1 ; σ̂n)
b(Xti−1 ; σ)

x− ∆ni

b(Xti−1 ; σ)h1/2
n

− h
1/2
n dni

b(Xti−1 ;σ)

)
−Φ(x)

}
,

IIIn(x) =
1√
nh

nh∑

i=1

{
I

(
ηni ≤

b(Xti−1 ; σ̂n)
b(Xti−1 ;σ)

x− ∆ni

b(Xti−1 ;σ)h1/2
n

− h
1/2
n dni

b(Xti−1 ; σ)

)

− Φ

(
b(Xti−1 ; σ̂n)
b(Xti−1 ; σ)

x− ∆ni

b(Xti−1 ; σ)h1/2
n

− h
1/2
n dni

b(Xti−1 ;σ)

)

+ Φ(x)− I(ηni ≤ x)
}

.

By Taylor’s theorem, we can express IIn(x) =
∑4

i=1 IIni(x), where

IIn1(x) =
1√
nh

nh∑

i=1

(
b(Xti−1 ; σ̂n)
b(Xti−1 ;σ)

− 1
)

xφ(x),

IIn2(x) =
−1√
nh

nh∑

i=1

∆ni

b(Xti−1 ; σ)
√

hn

φ(x),

IIn3(x) =
−1√
nh

nh∑

i=1

√
hn

b(Xti−1 ; σ)
dniφ(x),

IIn4(x) =
1

2
√

nh

nh∑

i=1

(
∆ni

b(Xti−1 ; σ)
√

hn

+
√

hn

b(Xti−1 ; σ)
dni

)2

φ
′
(ξ∗ni(x)),

where ξ∗ni(x) is a number lying between x and
b(Xti−1 ;σ̂n)

b(Xti−1 ;σ) x − ∆ni

b(Xti−1 ;σ)h
1/2
n

−
h1/2

n dni

b(Xti−1 ;σ) .
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By (A1)-(A3) and the mean value theorem, we can easily see that

sup
x
|IIn1(x)| = oP (1).(3.5)

On the other hand, by (3.4) we have

E sup
x
|IIn2(x)| = o(1).(3.6)

Now, by using Taylor’s theorem, we express dni = d
(1)
ni + d

(2)
ni with

d
(1)
ni = ȧ(Xti−1 ; θ)(θ̂n − θ) and d

(2)
ni =

1
2
(θ̂n − θ)

′
ä(Xti−1 ; θ

∗
ni)(θ̂n − θ),

where θ∗ni is an intermediate point between θ̂n and θ. By (A1)-(A4), we can
have

1√
nh

nh∑

i=1

√
hn

b(Xti−1 ; σ)
d
(1)
ni = oP (1)

and

1√
nh

nh∑

i=1

√
hn

b(Xti−1 ;σ)
d
(2)
ni = oP (1).

Hence,

sup
x
|IIn3(x)| = oP (1).(3.7)

In a similar fashion, it can be seen that

sup
x
|IIn4(x)| = oP (1).(3.8)

Hence, in view of (3.5)-(3.8), we have supx |IIn(x)| = oP (1).
Now it remains to verify that

sup
x
|IIIn(x)| = oP (1).(3.9)

Put

wn = max
1≤i≤nh

{ √
hn

b(Xti−1 ;σ)
|d(2)

ni |+
|∆ni|

b(Xti−1 ; σ)
√

hn

}
.

Then, by (A1)-(A4), we can get

n
1/2
h wn = oP (h1/2

n ).(3.10)

Set

eni =
b(Xti−1 ; σ̂n)
b(Xti−1 ;σ)

− 1.

Observe that by the monotonicity of the indicator function,

I

(
ηni ≤ x +

√
hn

b(Xti−1 ; σ)
d
(1)
ni − [wn + max

1≤i≤nh

(enix)]
)
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≤ I

(
ηni ≤

b(Xti−1 ; σ̂n)
b(Xti−1 ;σ)

x− ∆ni

b(Xti−1 ; σ)
√

hn

+

√
hn

b(Xti−1 ;σ)
dni

)

≤ I

(
ηni ≤ x +

√
hn

b(Xti−1 ; σ)
d
(1)
ni + [wn + max

1≤i≤nh

(enix)]
)

.

Further, by using (A1)-(A4), Taylor’s theorem, (3.10), and the fact that

n
1/2
h max

1≤i≤nh

|eni| = oP (1),

it can be readily checked that

1√
nh

nh∑

i=1

∣∣∣∣Φ
(

b(Xti−1 ; σ̂n)
b(Xti−1 ; σ)

x− ∆ni

b(Xti−1 ; σ)
√

hn

+

√
hn

b(Xti−1 ;σ)
dni

)

− Φ
(

x +

√
hn

b(Xti−1 ; σ)
d
(1)
ni + [wn + max

1≤i≤nh

(enix)]
)∣∣∣∣

+
1√
nh

nh∑

i=1

∣∣∣∣Φ
(

b(Xti−1 ; σ̂n)
b(Xti−1 ; σ)

x− ∆ni

b(Xti−1 ; σ)
√

hn

+

√
hn

b(Xti−1 ; σ)
dni

)

− Φ
(

x +

√
hn

b(Xti−1 ; σ)
d
(1)
ni − [wn + max

1≤i≤nh

(enix)]
)∣∣∣∣ = oP (1).

Subsequently, we have

sup
x
|IIIn(x)|

≤ sup
x

∣∣∣∣
1√
nh

nh∑

i=1

{
I

(
ηni ≤ x +

√
hn

b(Xti−1 ;σ)
d
(1)
ni + [wn + max

1≤i≤nh

(enix)]
)

− Φ
(

x +

√
hn

b(Xti−1 ; σ)
d
(1)
ni + [wn + max

1≤i≤nh

(enix)]
)

+ Φ(x)− I(ηni ≤ x)
}∣∣∣∣

≤ sup
x

∣∣∣∣
1√
nh

nh∑

i=1

{
I

(
ηni ≤ x +

√
hn

b(Xti−1 ;σ)
d
(1)
ni − [wn + max

1≤i≤nh

(enix)]
)

− Φ
(

x +

√
hn

b(Xti−1 ; σ)
d
(1)
ni − [wn + max

1≤i≤nh

(enix)]
)

+ Φ(x)− I(ηni ≤ x)
}∣∣∣∣

+ oP (1),

and therefore,

sup
x
|IIIn(x)| ≤ sup

x
|IVn(x)|+ sup

x
|Vn(x)|+ oP (1),

where

IVn(x) =
1√
nh

nh∑

i=1

{
I

(
ηni ≤ x +

√
hn

b(Xti−1 ; σ)
d
(1)
ni

)
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− Φ
(

x +

√
hn

b(Xti−1 ; σ)
d
(1)
ni

)
+ Φ(x)− I(ηni ≤ x)

}

and

Vn(x) =
1√
nh

∣∣∣∣
nh∑

i=1

{I(ηni ≤ x + [wn + max
1≤i≤nh

(enix)])

− Φ(x + [wn + max
1≤i≤nh

(enix)]) + Φ(x)− I(ηni ≤ x)}
∣∣∣∣

+
1√
nh

∣∣∣∣
nh∑

i=1

{I(ηni ≤ x− [wn + max
1≤i≤nh

(enix)])

− Φ(x− [wn + max
1≤i≤nh

(enix)]) + Φ(x)− I(ηni ≤ x)}
∣∣∣∣.

Since

sup
x
|Vn(x)|

≤ 2 sup
|Φ(x)−Φ(y)|≤bn

∣∣∣∣
1√
nh

nh∑

i=1

{I(ηni ≤ x)− Φ(x) + Φ(y)− I(ηni ≤ y)}
∣∣∣∣

= oP (1)

(cf. Billingsley ([3])), where bn = supx |Φ(x+[wn+max1≤i≤nh
(enix)])−Φ(x)| =

oP (1), it suffices to show that supx |V In(x)| = oP (1).
Let xj be such that −∞ = x0 < · · · < xNn = ∞ and Φ(xj) = j

Nn
, j =

0, . . . , Nn, where Nn = n2. Since

max
1≤j≤Nn

sup
xj≤x≤xj+1

∣∣∣∣
1√
nh

nh∑

i=1

{I(ηni ≤ xj)−Φ(xj)+Φ(x)−I(ηni ≤ x)}
∣∣∣∣=oP (1),

in order to (3.9), it suffices to prove that

max
1≤j≤Nn

∣∣∣∣
1√
nh

nh∑

i=1

{
I

(
ηni ≤ xj +

√
hn

b(Xti−1 ; σ)
d
(1)
ni

)

−Φ
(

xj +

√
hn

b(Xti−1 ;σ)
d
(1)
ni

)
+ Φ(xj)− I(ηni ≤ xj)

}∣∣∣∣ = oP (1),

which, however, can be verified by following essentially the same lines in Lee
and Wei [15], Lee and Taniguchi [12], and Lee and Wee [14] and by using (A5)
and Bernstein’s inequality for martingales. For brevity, we complete the proof
without detailing algebra.
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