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Empirical Bayes Nonparametric Estimation with Beta
Processes Based on Censored Observations

Jee Chang Hong! Yongdai Kim? and Inha Jung?®

ABSTRACT

Empirical Bayes procedure of nonparametric estimation of cumulative
hazard rates based on censored data is considered using the beta process
priors of Hjort(1990). Beta process priors with unknown parameters are used
for cumulative hazard rates. Empirical Bayes estimators are suggested and
asymptotic optimality is proved. Our result generalizes that of Susarla and
Van Ryzin (1978) in the sense that (i) the cumulative hazard rate induced
by a Dirichlet process is a beta process, (ii) our empirical Bayes estimator
does not depend on the censoring distribution while that of Susarla and
Van Ryzin (1978) does, (iii) a class of estimators of the hyperparameters is
suggested in the prior distribution which is assumed known in advance in
Susarla and Van Ryzin (1978). This extension makes the proposed empirical
Bayes procedure more applicable to real data sets.

Keywords: Empirical Bayes nonparametric estimation; Censoring; Beta process;
Lévy process; Dirichlet process; Martingale

1. INTRODUCTION

Empirical Bayes procedures by virtue of their using information from other
similar data sets are useful when the sample sizes are small and data sets are
sparse, in which case the maximum likelihood estimators may behave poorly.
However, most of researches in the empirical Bayes problem have treated paramet-
ric models. Much fewer results treating nonparametric models are now available.
This might be mainly due to the difficulties in finding suitable prior distribu-
tions. Since Ferguson’s(1973) fundamental paper on Dirichlet process priors on
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the space of cumulative distribution functions(cdf), much of the works on non-
parametric empirical Bayes decision problems have focused on the problems in
which prior probabilities are placed on the space of cdf’s.

In particular, Susarla and Van Ryzin (1978) provides a solution to an empirical
Bayes problem of survival functions when the observations are censored on the
right using the notion of Dirichlet process D(v), where v is a finite measure on
R = (—00,00). Their results, however, have the following limitations. Firstly,
Susarla and Van Ryzin (1978) assumed that »(R) is known in advance, which is
hardly observed in practice. Secondly, their empirical Bayes procedure depends
on the unknown censoring distribution, which should be estimated. However
if the number of censored observations are small, estimation of the censoring
distribution is not an easy task.

Deficiencies mentioned above are resolved to some extent in our work. We
consider in this paper the nonparametric empirical Bayes decision problem of
estimating the cumulative hazard rate (chr) with censored data based on the beta
process priors. Hjort(1990) has introduced the beta process as a prior for the chr
A. Note that since the chr induced by a Dirichlet process is a beta process(Hjort,
1990) our model extends the previous models based on the Dirichlet process prior.

By considering priors on the space of chrs, several advantages are obtained.
Firstly, a natural empirical Bayes estimator can be constructed in the counting
process framework. In particular, the proposed estimator does not depend on
the unknown censoring distribution. Secondly, martingale techniques can be
employed to prove the asymptotic optimality, and so many of the proofs become
much simpler and better organized.

Before proceeding, we review several salient features of the beta process.
Hjort(1990) introduced a nonparametric Bayesian model by placing a beta pro-
cess on the space of the chr defined by

_ dF(s)
At = /[] Fls,00)’

where F' is a distribution function. Note that the cdf F is recovered from chr A
by the relation

F(t)=1-]]{1-dA(s)}.

(0,2]
The definition of the beta process follows.

Definition 1.1. (Hjort(1990)) Let « be a chr with a finite number of jumps tak-
ing place at ty,t2,- -, and let c(-) be a piecewise continuous, nonnegative function
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on [0,00). Say that the Lévy process A is a beta process with parameters c(-), a(-),
and write as

A ~ beta{c(-),a()} (1.1)

to indicate this, if the following holds : A has Lévy representation,

Blexp{~£A(0)}] = | [] Ef{exp(~£5;)} exp{— / (1—e—€s>st(s>} (12)

Jiti<t

with
Sj = A{t;} ~ betafe(t;)aft;}, olt)(1 - aft;})} (1.3)

and
. ‘
dLs(s) = (/ o(z)s~ (1 — s)c(z)_ldac(z)> ds, t>0, 0<s<1 (1.4)
0
in which a.(t) = a(t) — th <t{t;} is a with its jumps removed.

The beta process has large support, its parameters have a nice interpretation
and explicit Bayes estimators can be derived, both for A and for related quantities.
Also, a particular transformation of a given Dirichlet process results in a special
case of the beta process, and hence the class of beta processes is a much larger
and more flexible class than that of Dirichlet processes. Hjort(1990) proved that
the class of beta processes is also closed under possibly censored sampling. This is
extremely useful in solving a Bayesian nonparametric estimation problem in which
the Bayes estimator is given by its posterior mean. Given a chr A4, let Xi,--- , X,
be iid with the chr A and assume that (73,61), - ,(Tn,dn) are observed, where
T; = min{X;,C;}, é; = I(X; < C;) and C},--- ,C, are censoring times. Define
the counting process N and the left continuous process Y by

N(t) = iI{Ti <t 6 =1}, Y(t) = iI{Ti >t}
=1

i=1
Assuming that the censoring times are either fixed or independent of the survival
times X;, we have

Theorem 1.1. (Hjort’s(1990) corollary 4.1) Let A ~ beta(c, ). Then |

O eda + dN
c+Y '

Al(T0,81), - (T, 6) ~ beta{ () + Y(-),/0
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Remark 1.1. Since, by Theorem 1.1 posterior of a beta process A is also a beta
process

¢ eda
A() = BABIT8),--+ (Ts) = [ HE2N

defines a Bayes estimator of A and

F(t)=1-]]{1-d4}

(0,¢]

is a posterior mean of F(t) and therefore defines Bayes estimator of F' under
squared error losses.

This paper is organized as follows. In section 2, we describe the empirical
Bayes decision problem of estimating the chr based on censored data. In section
3, various martingales are introduced and their properties are investigated. In
section 4, with the aid of the martingale results developed in section 3, asymptotic
optimality of the empirical Bayes estimators that can be obtained by a suitable
class of estimated priors is proved. Finally, conclusion with some remarks are
given in section 3.

2. THE EMPIRICAL BAYES DECISION PROBLEM

Let A be the space of all chr’s on [0,00) equipped with the o-algebra X4
generated by Borel cylinder sets. If the squared error loss is used in the deci-
sion problem, A, the Bayes estimator of A with respect to beta{c(), a(-)} is the
posterior mean of A, given data. If the parameters c(-) and a(-) are known, the
minimum Bayes risk at beta{c(-),a(-)} is attained by the Bayes estimator A().
When the parameters ¢(-) and «(-) are unknown but there are independent repe-
titions of the component problem of the same type, one may apply the empirical
Bayes approach of Robbins(1955) to have a sequence of estimators with risks
converging to the minimum Bayes risk.

For each j = 1,2,---, let X; = (Xj1,-- , Xjn;), C; = (Cj1,-++ ,Cjn;) and A;
denote the n; failure times, n; censoring times and the chr, respectively, in the
jth problem. Let Ay, Ap,--- be iid beta{c(-), a(-)}. Let Xj1, -+, Xjn, be iid Fj,
given A; and let Cjy,--- ,Cjn, be iid G, a nonrandom (sub)cdf on [0, 00), where

F; is the random cdf on [0, 00) determined uniquely by the relation

Fi(t) =1~ J[{1 - d4;()}. (2.1)

(0,t]
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Similarly, the cdf ®, corresponding to the chr «f(-) is given by

Bal(t) = 1 - [J{1 ~ da(s)}. (2.2)
0]

We assume that the parameters c(-) and «a(:) satisfy the following conditions;
(C1) af:) is absolutely continuous and satisfies [ a(t)dw(t) < oco.
(C2) ¢(-) = k®4[-, 00) for some positive constant & in [K !, K].

Remark 2.1. (a) Under (C1), ®, can be written as ®,(t) = 1 — exp(—a(t))
and @, has density ¢, (t) = o/ (t) exp(—a(t)).

(b) Under (C1), each A; has no fixed points of discontinuity and therefore
AA;(t) = Aj(t) — Aj(t—) =0, a.s. forall £ > 0.

Remark 2.2. (a) Under (C2), parameters of the prior are essentially k and
a(-). Henceforth, we frequently write as Ay, Ag, - -+ are iid with beta{k, a}.

~ (b) Since in our model, A1, Ag, - - are assumed iid with beta{k, a}, F1, Fa,---
are iid with D(k®,), where both k and «a(-) are unknown(see Hjort(1990)). In
Susarla and Van Ryzin(1978), Fi, Fy,--- are iid with D(v), where v([0, 00)) is
assumed known. Our model removes this assumption since the parametér k in
our model is unknown. Also D(k®,) can be more flexible in practice than D(v).

Assume that {X;;5 = 1,2,---} and {C};j = 1,2,---} are independent and
the data are subject to censoring. Thus by letting Tj; = min{Xj;, Cj;}, 05 =
I(X;; < Cj;) and Zj; = (T};, 04;) one observes only

Z]:(Zjlaazjn])a ]:1,2a

Our empirical Bayes model is concerned with the sequence of independent but
non-identically distributed stochastic processes {(4;,Z;);j = 1,2, }, where Z;
is the sample of size n; from the jth problem. The processes A, Ag,--- are not
observable, but iid with Qg () on (A, X.4), the distribution of a Lévy process
A ~ beta{k,a}. Foreach j =1,2,---,4=1,--- ,n; and t > 0, let

Nji(t) = I{Tyj < t,65; = 1},

(2.3)
Yilt) = H{T;i > t).
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Then the number of failures by time ¢ and the number at risk at time ¢ observed
from the jth component problem are respectively,

N;(t) = Ny(t),
o (2.4)
() =) Yilt),
i=1

and the total number of failures by time ¢ and the total number at risk at time ¢
in the first m component problems are given by

Nm(t) = Z Nj(t)a

= : (2.5)
Vm(t) =Y Y;(t).

j=1

Let ppm(i) = #{1 < j < m;n; = i} denote the number of the component
problems with sample size 1 among the first m problems. In addition to (C1)
and (C2) we assume that the sequence {n;} satisfies

(C3) limpyo0 2 pm(8) = Ai, 2 <4 < M.

Here M is an upper bound of {n;} and the lower bound 2 is related to the
identifiability problem which arises in common in empirical Bayes. This will be
discussed in section 5.

Let H = [0,00) x {0,1} and let P%(-) = P"(-|A) denote the conditional
distribution of (Z11, -, Z1,) on H™ given chr A and let

P() = P (|k, o)
a/wwmam>
A

= the marginal distribution of (Z11, -, Z1,) on H"
which is the Qg o—mixture of Py(-).

At the (m+1)th problem, estimation of A, 11 is desired. Let the loss function
at the (m + 1)th problem be

M&&mﬂ=lm@®—Amﬂm%MW (2.6)
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where w(-) is a given weight function(a finite measure) on [0, 00) and Ais an
estimator of A, based on Z,,,,. Bayes risk of A at the prior Q o(-) is

mm@ﬂw»a/L L(A, A)P™+ (dzy 1 |A)Qualdd),  (2.7)

where H, 11 = ([0, 00) x {0,1})"=+! is the observation space of Z,, ;. Mlnlmum
Bayes risk at the (m + 1)th problem is

1 (K, @) = inf R (4, (k, @), (2.8)

where the infimum is taken over all possible estimators of A,,+1. Under the loss
function (2.6), Bayes estimator of A, 11(t) is the posterior mean of Ap,41(t),
given Z,, .. By Theorem 1.1 and (C2), Bayes estimator of A,,;1 at beta{k, a}
is given by

Am+1(t) = Xm-H(t; k, )

/A At Qka(dAZ ) (2.9)

:/ k®als, 00)da(s) + dNmy1(s)
o4  Kk®als,00) + Ympi(s)

In the case where (k,) is known, one merely employs /Tmﬂ and thereby
incurs the minimum Bayes risk, i.e.,

T'm—l—l(kaa) = Rm+1(Zm+17 (kaa)) (210)
Suppose (k, @) is unknown and let (Em, Q) be an estimator basedon Z;,--+ , Z,,.

Bayes estimator A\m_i..] (t) of Apy1(t) at the estimated prior beta{Em, Qi } 1s taken
as empirical Bayes estimator of A;,11(¢). Thus, viewing (2.9) we have

o~ o~

A1 (t) = Ay (& bmy @) |
/A V@5, &, (FA1Zn 1) (2.11)

_ / b ®ms, 00)dGim (s) + AN (s)
[0,¢] kem®m[s,00) + Y1 (s)

bl

where $,(t) = 5, () = 1 — [ 4{1 — d@m(s)}-
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We see from (2.7), that the Bayes risk of Amy1 conditional on (Zy,+ , Z,)
is

Rpt1(Amtr, (k; )
=[] B AP iz A)Qra(dA),
AJHppp1

where the dependence on (Z;, -, Z,,) is not displayed.
Let P () be the joint distribution of (Z;, -+, Zy), i,

P ()= By x o x BE().
Then the overall Bayes risk of the empirical Bayes estimator A\m“(-) of Apm+1 is
Tﬂ-{—l (kv a)

" _ (2.13)
- / Rt (R, (ks 0)dBI (21, -+, 21)-
HixXHp

We see that 7%, (k,@) > rmy1(k,a). It is required that the empirical Bayes
procedure {A,,} satisfy the asymptotic optimality ;

n}i_lgloo{rz—i—l (k"’ a) — Tm+1 (k, a)} =0 (214)

holds for all (k, «).

The following three lemmas will be useful in proving the asymptotic optimal-
ity. The first lemma is a consequence of the Lo-orthogonality of E(Am41(t)[Zn41)—
Amy1(t) and Apy1 () — E(Amtr (8)Zmg1)-

Lemma 2.1.
o0 —~ .
a1k, @) = rmp1(k, a) +/ E(Ami1(t) — Apmg1(t)2dw(t), (2.15)
0

where B is the expectation operation with respect to the joint distribution of Ami1
and (Zla e aZ’m+1)'

Lemma 2.2. For eacht >0
P(Y ,(t) > 0 for all sufficiently large m) = 1 (2.16)
and

P( lim Y,,(t) = ) = 1. (2.17)
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Proof. Foreach j > Land ¢ > 0, P(Y;(t) > 0) > P(Y11(t) > 0) = $4[t, 00)Gt, 00) >
0 and therefore, 3572, P(Y;(t) > 0) = oo. Since Yi(t), Y2(t), -+ are independent
we have by the second Borel-Cantelli lemma P(Y;(¢) > 0 i.0.) = 1, which com-
pletes the proof. [

Lemma 2.3. Let ¢,(-) be a bounded and mean-square consistent estimator of
c(-). Then under (C1)

o0 rt
lim / / B(Gn(s) — ofs))2da(s)dw(t) = 0. (2.18)
Proof. Let Dp(t) = fot E(Gn(s) — c(s))?da(s). Then Dy,(t) is dominated
by a constant times «(t) and Dp,(t) — 0 as m — oo. Since (C1) is as-
sumed, [;° Dm(s)dw(t) = 0 by dominated convergence theorem and the lemma
is proved. O

3. RELATED MARTINGALES AND THEIR PROPERTIES

In this section we introduce some martingales and investigate their properties
that will be used in estimating the prior distribution and proving the asymptotic
optimality.

Let Z,,Z,, - be the sequence of data obtained by the independent repeti-
tions of the component problem. Let Ny;, Yy, N;, Yj, N,., Y., be the stochastic
processes based on Z;,--- , Z,, which are given by (2.3), (2.4) and (2.5).

Form >1,1<j <m, 1< <n; we define the following filtrations,

Ajt = o{Aj(u) : 0 <u <t

- (3.1)
‘Amt:Alt®"'®Amt,
Fiit = o{Nji(u), Yi(u) : 0 < u < t},
nj ' '
Fit = \/ Fjit . . (3.2).
=1

Fmt =F1t @ @ F,
Giit = Fjir ® Ajit, ‘
Gt = Fjt ® Ajit, (3.3)
gmt = -TF_mt @ th-
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We also define the processes

n t
M;(t) = Myi(t) = Nj(t) — ; Y;dA;, (3.4)
=1
m m i
Min(t) =) Mj(t) = Nim(t) = > | Y;d4;
7j=1 j=1 0

By (1.2)-(1.4) in Definition 1.1 we see that

BA;(t) = a(t) (3.5)
and
¢ QU
Var(4;(t)) = /O c?u)(+)1

_/t da(u)
 Jo k®ofu,00) +1°7

It is well-known that the process Mj; given in (3.4) is a mean-zero , square-
integrable {G;;; }-martingale and M]2z is a {G;i; }-submartingale with the compen-
sator

it
(M35, M) (1) = [ Vil = A4y (3.7

See Theorem 2.6.1 of Fleming and Harrington(1990).
Since EAA;(t) = Aa(t) =0, AA;j(t) =0 a.s. Therefore (3.7) becomes

(030, M) (1) = [ Vi as (3.8)

Using that B(Mj;(t)|G;s) = B(Mji(£)|Gjis) and B(M;(t)|Gms) = E(M;(8)|G;s)
for s <t we have the following theorem.

Theorem 3.1. For each j > 1, m > 1,
(a) Mj is a mean-zero , square-integrable {Gj}-martingale,
(b) My, is a mean-zero , square-integrable {Gmt }-martingale.

Theorem 3.2.
(a) If s < t, then A;(t) — Aj(s) is independent of Gjs = Fjs ® Ajs.
(b) Aj(t) — a(t) is a mean-zero, square-integrable (Gj;)-martingale.
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Proof. (a) Let Dy x Dy € Fj; ® Aj;. We see that P(D;|A;j¢) is Ajs-measurable
and therefore P(Dy x Dj|A;;) = 1p,P(D1]|A;) is Ajs-measurable. This leads to

P(D1 x Dq|A;(t) — A;j(s))

= E(P(D1 x Da|Aj1)|A;(t) — 4;4(s))
= EP(D; x Dol Ajq)

= P(D; x D»),

(3.9)

where the second equality holds because of the independent increments of A;.
Since Dy x Dy € Fjs ® Aj, is arbitrary, (3.9) implies that A;(t) — A;(s) is
independent of G;; = Fjs ® Ajs.

(b) Adaptedness and square-integrability of the Lévy process A; are obvious.
It suffices to show that for 0 < s < ¢,

B(4;(t) — alt) — (Aj(s) — a(s))Gss) = 0 aus. (3.10)

But (3.10) follows from (a). O

Now we observe that for any distinct integers 4,42, -+ € {1,2,---}, m > 1,
{ANi4, - ,ANp ;. } are independent {0, 1}-random variables. By Lemma 2.6.1
in Fleming and Harrington(1990), we see that for each (j,¢) # ({, k)

(Mji,Mlk)(t) =0 a.s. ‘ (3.11)
This together with (3.8) yields

Theorem 3.3.

_ _[fviads, =k
(@) <M],Mk><t>—{0’ o

(0) (M, Mu)(t) = ST, [5 YdA;.

For quadratic variation and covariation processes related to the Lévy processes
{4,152, we need the following two lemmas.

Lemma 3.1. Let 0 < s <t. Then,
() B(4;(1)[Gj5) = alt) — als) + 4;(s).
(6) B(A2(£)[G)5) = (a(t) = a(s) + A;(5))? + [} ok A
(c) B(A;(t) Ax(1)|G1s®Ghs) = (ce(t) —a(s)+ 4;(s))(ex(t) ~ax(s)+ A (s)) for j #
k. :



492 Jee Chang Hong, Yongdai Kim and Inha Jung

Proof. Part (a) is immediate from Theorem 3.2.(b). By Theorem 3.2.(a), A;(t)—
Aj(s) is independent of Gj, for s < t. Using (3.6) we see that

E[(4;(t) — 4j(5))*|G;s]
= E(4;(t) — 45(5))°
= BA3(t) — 2B(4;(t) - 3(8)) j(s) = EA}(s)

J
. /t do(u)
B s c(u) +1°

Then,

E(A}(1)1G;5)
= B[(A;(t) — 4;(5))%1G5s] + 2B[(A4;(2) — A;(5))45(5)|Gjs] + A3 (s)
= B(4;(t) — A;(5))® + 24;()E(4;(t) — 4A;(5)) + A3 (s)
= (alt) — als) + 450 + [ S0
which proves (b). ‘
For j # k, s < t, A;(t) — Aj(s) is independent of G;s ® Ggs. Therefore,
(A;j(t) — A;(s))(Ax(t) — Ax(s)) is also independent of G;; ® Gks and we have
E(A;(t)A(t)|Gjs ® Grs)
= E(A4;(t) — 4;(s))E(Ak(t) — Ak(s)) + Ax(s)E(A;(?)|Gjs)
+ A;(s)E(Ag (1) |Gks) — Aj(s) Ak ()
= (a(t) — a(s) + 4;(s))(a(t) — als) + Ax(s),
which proves (c). O
Applying Lemma 3.1 we have

Lemma 3.2.

(a) If j # k, (A;(t) — a(t))(Ar(t) — a(t)) is a (Gji ® Grt)-martingale.
(b) (A;(t) — a(t))? - Ot% is a (Gjt)-martingale.

Theorem 3.4. do
t dafu .
—;—L =k
(A]—aAk—a)(t) fO c(u)+1°? 2 .
0, J#k

Proof. This is an immediate consequence of Lemma 3.2. O
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4. ASYMPTOTIC OPTIMALITY
Recall from (2.11) the empirical Bayes estimator Apy1(-) of Apmi1(-) ;

~ [ Cn(8)dBm(s) + dNpmy1(8)
Apyi(t) = /o em(8) + Y1 (s)

(4.1)

where ¢, (s) = Em§m[s,oo) is an estimator of c¢(s) = k®,[s,00) and &y, is an
estimator of o based on censored data Z; = (Zj1,--+ , Zjn;), J = 1,-- ,m. As-
sume that the sample size sequence {n;} satisfies the condition(C3). Our goal
in this section is to show that the empirical Bayes procedures {Zm()} provided
by a suitable class of estimated priors is asymptotically optimal, i.e., (2.14) holds
for all (¢(-), a(-)) satisfying conditions (C1) and (C2).

Theorem 4.1. (asymptotic optimality) The empirical Bayes procedure {Zm()}

given by (4.1) is asymptotically optimal if
(i) {km} is a bounded sequence and limy, oo km =k, a.s.
(#1) limy, o0 Gm = @, uniformly, a.s. on compact intervals,
(iii) [3° B(@m(t) — a(t))2dw(t) < co for each t > 0.

o~

m®Pm[, 00) is ¢ bounded and mean-square consistent

)

Proof. From the condition (i) and bounded convergence theorem we see that

Corollary 4.1. ¢,(-) =
estimator of ¢(-) = k®q[-,

R 7=

o~

E(km — k)> = 0 as m — oco.
By Duhamel equation(Gill and Johansen(1990)),

1B (t) — @a(t)] = | [J(1 = dam(s)) = [] (1 ~ dax(s))]

0,4 0.1
< |a@m(t) — al(t)].

This together with the condition (ii) implies
E(®pm[t, 00) — Byt oc;))2 — 0 as m — oo.
Now, proof follows by observing that
E@n(t) — c(t)? < 2E(km — k)2®p[t, 00) + 2Bk%(B,[t, 00) — Balt, 00))?

< 2E (b, — k)2 + 2K2E(®pn[t, 00) — By t, 00))?,
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where K is the constant in (C2). O

Let Apmy1(-) be the Bayes estimator of Api1(-) given by (2.9). By a simple
calculation we have

-~ ~

Amg1(t) — Amy1(2)
t
/ U(5)d(@n = 0)(6) + [ ()M (o) (42)

[ ono s (6)Am s~ (5,

where
(3) _ 1 _ 1
om (5) + Yims1(s)  €(5) + Yims1(s)
C(S) - Em(s)
@) 1 Y1 (9)(cl) 1 Yorr2(5)” (4:3)
cm(s)
Vnls) = 2 S Yo )
Let
t
Un(t) = /0 Ym()d(@m — 0)(3),
t
Vi (£) = /0 om(8)dMn 1 (5), (4.4)
t
Wi () = /0 om()¥my1 (8)d(Amsr — )(s).
Then, (4.2) is written as
Ami1(t) = Apg1(t) = Um(t) + Vi1 (£) + Wengr (8). (4.5)

The following upper bounds of the second moments of the quantities in (4.4)
will be useful in proving asymptotic optimality.

Lemma 4.1. Let Uy (), Vipy1(-) and Wpp1(+) be given by (4.4). Then we have
the following.

(¢) E(UQ())SE( m(t) = ())
(b) E(V m+1 )Sf(f m( c(S))?da(S)-
(¢) E(W(t) < [ E 5 — c(s))?da(s).
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Proof. (a) Since 0 < 1, < 1, by considering the positive and negative parts of
the signed measure &, — o we have

(b) Conditional on A, q1, Myny1 is a mean-zero, square-integrable {Fp,y1,¢}-
martingale by Theorem 3.1.(a). Since ¢y, (-) is {Fm+1,¢}-predictable, given Z,, -+, Z,,
and bounded we see that Vp,41(-) is a mean-zero, square-integrable {Fpy1+}-
martingale, given Ay, 41,24, "+, Z,,. Therefore we have, by Theorem 3.3.(a),

E(V1271+1(t)lAm+1aZ17 o LZm)
t

= E(/O (pgn(s)d<Mm+17Mm+1>(s)lAm+laZ1’ e ’Z.m)
t

= B( [ G ¥ont1 (A1 () A1, Ziv-++ )

By taking expectation and using Y;2_,(s) > Yr41(s), s > 0, we see that
E(VZ,.(@) = E(/Ot 02 (8)Ymi1(8)dAm1(s))
< E(/Ot(wm(S)YmH(S))ZdAmﬂ(S))
< B [ Gnls) — ls) s (1)
- /Ot E(Gn(s) — c(s))?da(s),
where the last equality holds since Ay, 1 is independent of (Z;,---,Z,,)-
(c) By Theorem 3.2.(b), An,+1(-) — a(-) is a mean-zero, square-integrable

{Gm+1,t}-martingale. And @, (-)Ymy1(-) is {Gm1,¢}-predictable, given Z;,--- , Z,,
and bounded. Since A;41(-) — () is independent of Z;, -+ ,Z,,, we see that

Y =m
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Wnt1(:) is a mean-zero, square-integrable {Gp,+1 ¢ }-martingale, given Z;, - - -

Therefore by Theorem 3.4,
E(W’?n'i'l(t)lzl’ T ’Zm)

= E(-/O (S)Ynzz—f—l(s)d(Am-l-l ~a, Apt1 — @) (3)‘217 T 7Zm)
)

Ly
Pm
t 2 2
(Pm(s Ym—{-l(s)
=E — e od VATEEEIY /A R
(/0 c(s) + 1 ()| 2y, Zm)
By taking expectation,

_ [t ()
B(W1 (1) = [ it ga

"B —c(s))%dals).
s/OE(cm(s> (5))2dafs). O

Proof of Theorem 4.1. By Lemma 2.1, it suffices to show
x

lim E(Ami1(t) — A1 (£)2dw(t) = 0.

m—o0 0

We see that

W

/0 T B () = Ay (1)) dun(t)
< [ Bk @t + /0 B(VZ,, (8))duw(?)

" /0 B(W2,,., (&) du(?)

(I) + (II) + (I1D),

I

where
(1) < [;° E(@m(t) — a(t))?dw(t), by Lemma 4.1.(a),
a0 < ;7 fot E(Gn(s) — c(s))?da(s)dw(t), by Lemma 4.1.(b),
(II) < f;° fot E(Gn(s) — c¢(s))?da(s)dw(t), by Lemma 4.1.(c).
Therefore,

/0 T B s (8) ~ A (£))2du(t)
> a — a(t))2dw
<3 /0 B(@m(t) — a(t))?dw(?)

+6 /0 ” /0 "E@n(s) - ols))?da(s)du(t).

(4.6)

(4.7)
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By condition (ii) of the theorem lim,, fg(&\m(s) —a(s))?dw(s) =0 a.s. for t > 0.
By Fatou’s lemma and Fubini’s theorem limg, fg’ E(Gm(s) — a(s))?dw(s) = 0 for
t > 0. Since ¢ > 0 is arbitrary and condition (iii) is assumed the first term of
rhs of (4.8) converges to zero as m — co. The second term converges to zero by
Corollary 4.1 and Lemma 2.3 and the proof is completed. O

5. CONCLUDING REMARKS

Our empirical Bayes problem can be transformed into an empirical Bayes non-
parametric estimation problem of survival functions based on the right censored
data with Dirichlet process D(k®,). The quantity & which is well-interpreted
as the prior sample size in Ferguson(1973) would be generally unknown. In this
sense the work of Susarla and Van Ryzin(1978) is incomplete in that & is assumed
known. _ ‘
It would be necessary to work on constructing a sequence of estimators of the
hyperparameter (k,a(-)) with which the empirical Bayes estimation procedure
(4.1) satisfies asymptotic optimality. We treat this problem in a separate paper
in which martingale technique is used in the estimation of «(-) and a closed form
of the marginal distribution is obtained for a maximum likelihood estimator of
the parameter k. |

In Susarla and Van Ryzin(1978), without the assumption that k is known
the class of marginal distributions based on single sample size need not be iden-
tifiable. A class of marginal distributions is said to be identifiable if there is a
one-to-one correspondence between the class of marginal distributions and the
class of parameters of the prior. Without the identifiability condition, estimating
the prior distribution for the empirical Bayes problem would be meaningless. By
taking two or more observations at each component in our empirical Bayes prob-
lem(See condition(C3)) we see easily that from the closed form of the marginal
distribution the class of marginal distributions is identifiable.

Asymptotic optimality of the empirical Bayes estimators of the survival func-
tions {ﬁm},

Bult) = 1— JJ{1 - ddn(s)}

[0,¢]

follows easily from the asymptotic optimality of {Xm} using the analytic proper-
ties of the product-integral operation(Gill and Johansen(1990)).
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