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Empirical Bayes Test for the Exponential
Parameter with Censored Data'

Lichun Wang"

Abstract

Using a linear loss function, this paper considers the one-sided testing problem
for the exponential distribution via the empirical Bayes(EB) approach. Based on
right censored data, we propose an EB test for the exponential parameter and
obtain its convergence rate and asymptotic optimality, firstly, under the condition
that the censoring distribution is known and secondly, that it is unknown.

Keywords: Asymptotic optimality; convergence rate; empirical Bayes; random
censorship.

1. Introduction

In reliability and life testing studies, the exponential distribution plays an impor-
tant role. It was the first lifetime model for which inference procedures are extensively
developed. The probability density function (pdf) of an exponential distribution is

f(z|A) = dexp(—Az)I(z > 0),

where A > 0 is the exponential parameter and I(A) denotes the indicator function of the
set A. To employ the empirical Bayes approach, we assume that the parameter A has an
unknown non-degenerate prior G() with support on A = (0, ).

Consider the following problem of testing the hypotheses

Hy:0< A< Xg— Hi: x> ),
under a linear loss function, defined as follows
LA d) = (1 —2) (A= X)X > o) +i{ho — NI (N0 > N),

where D = {dy, d; } denotes the action space with d; (i = 0,1) accepting H;.
In this paper we assume that the true sample X = x is not observable. Instead,
we only observe 7' = min{X,Y} and A = I(X < Y), where Y denotes the censoring
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variable, which is nonnegative and independent of X and follows an absolutely continuous
distribution W.
Obviously, given A, T has the conditional pdf,
h(t[A) = FEN{L - W)} +w(t){1 - F(tN)}, t>0,

where w(t) denotes the pdf of Y and F(t|A) = f flz|A)dz.

Set p(t) = P{accepting Ho|[(T,A) = (¢,6)}. Let R(p(t), G(\)) be the Bayes risk of
the test p(t) with respect to the prior G(\). Then, by Fubini’s theorem and the fact that
J” h(t|\)dt = 1, we have

R(p(t), G(\)) = /OOO/A[L(A, do)p(t) + L(A, d1){1 — p(t) HA(HIN)dG(N)dt
_ / " m(t)p(t)dt + / L(\, d1)dG(N),
0 A

where

- / (= A)R(EINEC ().
A

Since [, L{\,d1)dG(X) does not depend on ¢, it is easy to see that the Bayes test
pc(t), which minimizes the risk R(p(t), G())), would have form

o= {§ 4702
Its Bayes risk is
R(pc(t), G(N\)) = /Ooo m(t)pe(t)dt + /A L(X, dy)dG(N). (1.2)

Furthermore, note that m(t) < 0 <= m(t)/h(t) < 0 < E(\|T = t) < Ao with
probability one, we have

1, if EQAT =1) < Ao,

Pa(t) = {0, if BT =1t)> X, (1.3)

where h(t) = [, h(t]N)dG(N) = f(){1 — W(t)}(t > 0) + w(t){1 — F@t)}(t > 0) is
the marginal pdf of T, f(t) = [, f(t|]A)dG()\) and F(t) denote the marginal pdf and
distribution of X, respectively and E(A|T = t) = [, Ah(¢|A)dG(X)/h(t) is the posterior
mean of A given T = t.

From (1.3), we see that the Bayes test pg(t) is uniquely determined by the posterior
mean of A, given T. If E(A|T = t) < Ao, we accept Hy; otherwise, we accept Hj.

However, since the prior G(0) is unknown to us, the Bayes test pg(t) is unavailable
to use. As an alternative we can employ the EB approach, which was introduced to
statistical problems by Robbins (1955, 1964), to estimate E(A|T = t) so as to obtain an
EB test.



Empirical Bayes Test for the Exponential Parameter with Censored Data 215

Since Robbins’ pioneering work, the EB approach has been applied in a wide range of
paradigms and to numerous real-life problems. Some earlier results dealing with the EB
estimation or testing problem in one-parameter exponential family can be found in Johns
and Van Ryzin (1971, 1972), Van Houwelingen (1976), Singh (1979) and Stijnen (1985),
etc. Recently, Liang (2000a) employed Bernstein’s inequality and obtained a better order
of convergence rate than that of Karunamuni and Yang (1995). Under the assumption
that the critical point is within an unknown compact interval, Liang (2000a) claimed that
the order of convergence rate is O(n~%/(>%3)) for a positive exponential family. Similar
work is also presented in Liang (2000b).

Differing from the above works, this paper considers the case that the true sample is
censored. We assume that the same case had taken place n times in the past historical
experiments. In the random censorship model, we observe only 7; = min{X;,Y;} and
0; = I(X; £Y;), where i = 1,2,...,n. Hence, at the present stage, (T, A) are the present
sample while (T1,01),...,(Ty,5,) denote the n past data. Actually, many statistical
experiments result in incomplete samples, even under well-controlled situations. This is
because individuals will experience some other competing events which cause them to be
removed.

Based on (T;,4;) (1 <i < n) and (T,A), in Section 2 we construct a monotone EB
test and obtain its convergence rate under the condition that the censoring distribution
W is known. In Section 3, for the case that the censoring distribution W is unknown to
us, an asymptotically optimal EB test is proposed. Finally, some remarks and conclusions
are given in Section 4.

2. EB Test for the Case that W is Known

Note that
/ MR(HNEG(N)
_ _ A
BONT = 1) =

(1- W)} / MEHN)AG) + w(?) / M1 = PG

_ A A

SO{1-W(@)} +w(t){l - F(t)}

0 - WO+ w0 o

FO{1 =W} +w(t){l - F(t)}’ '
where

/ Af(EING(N) = / A exp(—M)I(t > 0)dG(A\) = —fV(2)
A A
and

/ M1 = F(HN)}GO) = / Aexp(—At)I(t > 0)dG(N) = f(2).
A A

Since W (t) and its density w(t) are known in this section, we only need to estimate
F(t), f(t) and its derivative f((t) in (2.1).
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An estimator F(t) of F(t) can be defined by (see, Kaplan and Meier, 1958)

1—F(t):ﬁ<ni_;—i—l

i=1

Ty <t, 8¢;)=1)
) , t< T(n), (2.2)

where T(l) <--- < T(n) denote the ordered samples and (5(i) is the concomitant of T(i).
Consequently, we can define the estimator for f(*)(t) (i = 0,1) as follows

190 = 7= [0 () b (2:3)

where 0 < h, — 0 (as n — c0) denotes the bandwidth and k;(z) (i = 0,1) are kernel
functions. Denote e(t) = E(A|T = t). we define the following estimator for e(¢),

—f@ - f
o) [ OO -We i) | (2.4)
FOR =W} +w®){1 -FO)} ],
i <
where 0 < v < 1 is to be determined and [b]); = { g’, 11ff I|II))|| N 1\]\/;;,
Hence, an EB test is defined as
1, if é(t) < Ao
=) ' 2.5
pes(?) {o, it &(t) > Ao (2:5)
The overall Bayes risk of ppp(t) is
R(pos(t).GO) = [ m®Eupea(}de+ [ LOMAGM),  (26)
0 A
where E,, denotes the expectation with respect to the joint distribution of (71,...,T},).

By definition, the EB test pgg(t) is said to be asymptotically optimal relative to
the prior G(A) if R(prg(t), G(A)) — R(pc(t), G(A)) = o(1), where o(1) denotes terms
converging to 0 as n — oo. If for some ¢ > 0, R(prs(t), G(N\) — R(pa(t), G(A)) =
O(n~?) = n~?70(1) with O(1) denoting terms bounded, then the convergence rate of
pep(t) is said to be the order O(n~9).

Following from (1.2) and (2.6) and using Markov’s inequality,

0 < R(pus(t), GN) - R(pa(t), G(V))
- / m(t) [Ea{pes(t)} — palt)] dt

/oo h(t){e(t) — o }[P{e(t) < Ao} — 1]dt, if e(t) < Ao,

/ " ) {e(t) — A} PLE() < Ao}, it e(t) > Ao
0
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< /Ooo h(t)le(t) — Aol P{|e(t) — e(t)] > le(t) — ol}
< /0 WO Bale(t) — e(t)|dt = EpE,|6(T) — e(T)), 2.7)

where Ep stands for the expectation with respect to the variable T'.
The main result in this section can be formulated in the following theorem.

Theorem 2.1 Let pg(t) and pgpp(t) be defined in (1.1) and (2.5), and R(pg(t), G(A))
and R(ppp(t), G(A)) be defined in (1.2) and (2.6), respectively. If the following conditions
hold:

(C1) E[R~*T){1 - W(T)}*{f)(T)}*] < oo,
(C2) ER*(T){1 - W(T)} f(T)] < oo,

(C3) E[R>(T)w?(T){f“NT)}?] < o,

(C4) ER*(T)w?(T){1 - W(T)} ' £(T)] < oo,
(C5) B{h"*(T)w*(T)} < oo,

(C6) E(N*) < o0,

then, taking h, = n™1/(2s+1) and v = (2s + 1)~!

sup [R(pes(t), G(N) — R(pa(t), G(\))] = (n‘fs%)7

t<Tp
where T is such that 1 — H(T;) > € with some € > 0 and s > 2 is an integer.

To prove Theorem 2.1, we need the following several lemmas.

Lemma 2.1 Let Y, Y’ be random variables, let y, 4’ and M > 0 be real numbers, then
for0<r<2

¢
Y yly

Proof: See Singh (1977). O

T '
< 2yl {EIY' Y+ ( :

+M> E\Y —y|T}.

Lemma 2.2 Let Ty be such that 1 — H(T) > € with some € > 0. Then the process
F(t) — F(t), —o0 <t < 0o, 1 — H(t) > 0, can be represented as

F@) - 2{1— ()} M;(t) + = R (t)
in such a way that

2
P (sup | R, (8)] > TC log” n +mlogn) < 2K exp(—7€’z), x>0,
t<Ty
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where i.i.d. Gaussian processes M;(t), Ma(t),..., EM,(t) = 0 with the covariance func-
tion

EM(s)M(t) = EM(s)? = /s dF(t) —00 <8<t < oo

—oo {1 -W(HHL - F($)}*’

Here C > 0, K > 0 and 7 > 0 are some universal constants.

Proof: See Major and Rejto (1988).
Before stating next lemma, we assume the kernel function k;(z) (i = 0,1) satisfy:
(A1) ki(z) (¢ =0,1) are continuously differentiable with support (0,1) and

1 S
; -1y, if j=1
J k. — ( ) ’
(1)/Oxkz(x)dx {07 i =01 5—1
1
(2) / l‘sk‘i(.'t)dl' # O, kl(O) = kz(l) = 0, 1= 0, 1,
0
where s > 2 is an arbitrary but fixed integer. O

Lemma 2.3 Let f()(¢) be defined in (2.3). Under the assumption (A1), choosing h,, =
n~1/(2s+1) for t < Ty, which is defined in Lemma 2.2, we have

En{fO0 = OO < [eud fOON + easf ({1 - W()} | n=@=20/@s4D 20,1,
where c1; and cp; are positive constants that do not depend on n and s > 2.

Proof: The original idea maybe come from Lemdani and Ould-Sald (2002). Integrating
by parts, we have

9@ - 1)
~ i [0 (52Y) atbw - Py + [ (52) aFw - 190

= h% / {F(y) - F(y)} K (t;—ny) dy + {hi /ki(u)f(t — uhy)du — f<i>(t)}
S " (2.8)

By Lemma 2.2, we have

1 T (1)
L= o /0 ;{1 = F(t — uhn)} M;(t - uhn)k;” (u)du
1 [ (1)
+W /0 R (t— Uhn)ki (u)du
= I+ I (2.9)

and
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I} = th// (t — why)F(t — vhn) > Mj(t — uhy)
j=1

x EMZ t — vk )k (w)kY (v)dudo, (2.10)

where F(t) = 1 — F(t).
Firstly, expanding d(t — uhy,), F(t — uh,) and F(t — uh,) at point ¢, one obtains

1
xF(t ~ why,)F(t — vh )k(l)( )kgl)(v)dudv

_ nh2+2’ / / d(t — whn)F(t — uhn) E(t — vhn) b (0)dok® (w)du

hml/ / (t — vhy)F(t — uhp) E(t — vhy )k (0)dok? (u)du

=t [ @+ Qe wa, (211
with
o W )
Q1 (w) = (1) F2(1) /O [1 +h {u é((tt)) +o IJ;(('?) —ud . (t()t) } 4 o(hn)] D (0)do
and

_ £ ! f(t) [ dY@) )
Q2(u) =d(t)F (t)/u {1 + h, {UF(t) + vF‘(t) — v Q) } + o(hn)] k7 (v)dv,

where d(V)(t) denotes the derivative of
t dF(t)
d(t) = . 2.12
0= [ Tt —Far (212
Together with the assumption (A1), we have
t) ! 1
E I} = / . / k? (u)d <—> . 2.13
B W Jo BT (219
Secondly, also by Lemma 2.2,

L \2 2
E, I < ey ( > E{SUP an(t)|}

nhitt t<Ty

1 \? [
—en [ —— tP Ra(t)] >t b dt
v (e ) [P {sop im0 = )

-0 <1°L4"_> (2.14)

n2h%t?
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On the other hand, expanding f(t — uh,,) and using the assumption (A1), we know

1 ~ f® (“Uh )k ) (~uha)® (@)
I, = i {f(t +Z + i du — f¥(t)
= czihz O +o(hy” Z), £ € (t — uhp,t). (2.15)
Following from (2.8)—(2.15) and taking h,, = n~'/(2*+1) we conclude that the Lemma
2.3 is true. u

Lemma 2.4 Let F(t) be given in (2.2). Then E,[F(t) — F(t)]2 = O(logn/n).
Proof: Using the Theorem 3.2 of Foldes and Rejté (1981), we know

. \/loﬁ)
sup |F(t) - F(t)| =0 , 2.16
sup |F(1) - F(0)] = 0 (L% (2:16)
where T} is such that 1 — H(Tp) > € with some ¢ > 0. Hence, the conclusion of Lemma
2.4 is obvious. O

Proof: The proof of Theorem 2.1 Denote
E,{&(T) - e(T)}* = En{&(T) - &(T)}*I{e(T) < n"}
+E{&(T) — e(T)}2I{e(T) > n*}
= Q1+ Q. (2.17)
First, by Lemma 2.1, we have
Q1 = En{e(T) - e(T)}°I{e(T) < n”}
< En{é(T) — e(T)}onv|?
_ ~fOD-WD)+wDFT)  —fOD){1=-W(T)} +w(T)f(T)
FO{1-WD)} +w(D{1-FT)} fO{A-WD}+w(T{1-FT)}|
< AR AW (D)PE[fO(T) = fO(T) + 4071w (T) B, [f(T) - (T)]
+36n°"h=*(T){1 = W(T)}?En{{(T) - £(T)}
+36n°"h~2(T)w*(T)E.{F(T) — F(T)}>. (2.18)

Second, using Lemma 2.3 and Lemma 2.4 and Theorem 2.1’s conditions, we can easily

obtain
ErQ, < cufgz_ﬁ + C5n"(%_2”). (2.19)
On the other hand, note that e(T) = E(\|T), by Hélder’s inequality, we have
ErQz = Er[E.{&T) — e(T)}*I{e(T) > n*}]

4E7[e*(T)I{e(T) > n*}]
AEr[EQOT)I{E\T) > n®}]
A(EX*): [E{EXT}?*n 2013
= 4n 2D pA2s, (2.20)

IAN A A



Empirical Bayes Test for the Exponential Parameter with Censored Data, 221

Together with (2.7) and taking v = (25 + 1)~', we have

0 = sup{R(pes(t), GOV) ~ R(ps(t), GN)}

< ErE,|é(T) — e(T)|

< Br[E{&(T) - e(T)}*)?

< (BrQ: + ErQy)?

-0 (n—ﬁ) . (2.21)
The proof of Theorem 2.1 is finished. O

Remark 2.1 If there is no censorship, the Theorem 2.1’s conditions and conclusion will
become E[f~2(X){f*)(X)}?] < 00, EX?* <00 and sup{ R(pgz(z), G(\) — R(pc(z), G(\)}
=0 {n‘(s_l)/ (25“)}. Obviously, due to the existence of censorship, the same problem
gets very complicated.

3. EB Test for the Case that W is Unknown

Since W (t) is unknown in the expression of e(t), we estimate it by its product limit
estimator W(t) (see, Kaplan and Meier, 1958) given by

n )I(T(i)St, 8¢;y=0)

o =11 (5

=1

, if < Tiyy. (3.1)

Accordingly, we propose an estimator of w(t) as

(t) = hl / ks (t ,;y) W (y), (32)

where k3(z) is a kernel function.
Note that {1 - W(t)}f(t) + w(t){1 ~ F(t)} = h(t) as t > 0, by (Th,T,...,T,) and
T', we define the kernel estimation of h(t) as

. 1 & T, —t
h(t)_’n—hn;k?)( .

where k3(z) is a kernel function.
Together with Section 2, finally we propose the following EB estimator for e(t),

) - FOOL =W+ a(0)f @)
A0 |

> , (3.3)

(3.4)

with

_ | A, if A(t) > 6n,
An(t) = {an, if h(t) <6,, (3.5)
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where 0 < 6,, — 0 as n — oo.
Hence, in this case the EB test is defined by

pstr= {3 £ 050
Its overall Bayes risk is
R(pes(t), GV) = / " () En{pes(0)}dt + /A LG, ()

Obviously, similar to (2.7), we have
0 < R(pps(t), G(A)) — R(pc(t), G(N)) < ErEn|e(T) — e(T)l. (3.8)

In what follows, let ¢, co,c1,..., denote positive constants that do not depend on n
and they can take different values while appearing even within the same expression.

Lemma 3.1 Let f®)(t) be defined in (2.3). Under the assumption (A1) with s = 2,

£ log* n

E{fO%) — fO@®)) < erht2{f@ ) + ¢ W) +c3 REYPR

i=0,1.

Mimicking the proof of Lemma 2.3.
Note that F(t) and W (t) are opposite in the censorship model, we have Lemma 3.2.

Lemma 3.2 Let w(t) be defined in (3.2). Assume that w(t) has the second order deriva-
tive. For a suitable kernel k2(x), which has the same properties as ko(z), then for ¢ < Ty,

E{i(t) — w(t)}? < erhi {w@ (1)) + cow(®){1 — F(£)}  (nhp) ™t + ca(n?h2) Ylog* n.

Proof: Replace F(t) by W(t) in Lemma 2.2 and follow a similar proof to that of Lemma
3.1.
Assume that ks(z) is a non-negative bounded Borel measurable function satisfying

1
(1) ka(z) =0,z ¢ (0,1), (2) / ks(xz)dz = 1.
0
Then by (3.3), we have the following lemma. O

Lemma 3.3 Let h(t) be given by (3.3) with the kernel function ks(x) satisfying the
above assumption. If sup, w(!)(t) < co and EAX? < 0o, then

En{h(t) = h($)}* < — + b,

where w(1)(t) denotes the derivative of w(t).
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Proof: Note that

En{h(t) - h(t)}* < 2E,{h(t) — E.h(t)}* + 2{Enh(t) — h(t)}?
= 21 + Jo). (3.9)

First, one has

Jy = Varlh(¢)]
e s (5)

h(t + hpu)du. (3.10)

IA

nh,

By h(t + hpu) = {1 = W(t + hyu)} F(t + hpu) + w(t + hpu){1 — F(t + hyu)} and the
monotonicity of f(t) and EX? < oo, we have

(3.11)

Secondly, since

/ Ka(uh(t + hnu)du, (3.12)

expanding h(t + hau)=h(t) + [{1 = W(E)}F D (€) + wM (€)[{1 — F(E)]} — 2w (&) f(§)]hnu,
where t < £ < t + h,u and using sup, w()(t) < oo, one has |E,h(t) — h(t)| < c2hn.
Thus

Jo < coh?. (3.13)

Therefore, by (3.11) and (3.13), Lemma 3.3 is proved. Now we state the main result
of this section. u

Theorem 3.1 Let R(pe(t),G()\)) and R(Per(t), G(A)) be defined by (1.2) and (3.7),
respectively. If EA?> < oo and the following conditions are satisfied:

@ £ [rvm) <= [rm] <

(b) E [dD)(rO(T))?] < o0,
(¢) E [w(Q)(T)]2 < 00, sgpw(l)(t) < 0.

Then, choosing nh8 — oo, nh,02 — co and h,, = 0(6,,) as n — oo, for t < Ty, which is
such that 1 — H(Tp) > € with some € > 0, we have

Jlim R(peg(t), G(A) = R(pa(t), GN),

where d(T) = fOT dW(y)/[{1 - Fy)}{1 - W)}
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Proof: From (3.8), we have

0 < lim R(pep(t), G(N) — R(pc(t), G(N))
< \/nan;o ErE,{e(T) — e(T)}2. (3.14)

To obtain the Theorem’s conclusion, by the dominated convergence theorem, we need
prove the following two steps:

(i) E.{&(T) - e(T)}’ < M(T) and ErM(T) < oo,
(i) lim E.{&(T) - e(T)}? = 0, for any fixed T.

In order to prove (ii), by (2.1) and (3.4), one has
E, {e(T) - e(T))

< op, | PO = WD} + o(@)(T) + {1 = WT)} FOT) — w(T)F(T) :
= A,(T)
) {1-WD}HT) +w@{1-FT)} 1°
+2e*(T)E, [ AT - 1]
) {Q<1> + 62(T)Q(2)} . (3.15)

Since An(T) > 6, together with the fact that
E[-FO@ {1- WD)} + o) + {1 - WD)} rO@) —w@y@)
< 128, {101) - FOD) + 88, [(@) - W) O]
B, [{a(T) ~ w() D)) + 4B, (D) - F@u@)] (3.16)
where we use the fact that W (T') < 1, we have
QW < 6 [128, {;0) - D) 488, [00() - WD)
HE, [{0(T) —w(T)H(T)] + 4B, [(/T) - FO)u(r)] 2] SERCAL)
Firstly, by Lemma 3.1, as nh® — oo, we have
B (0@ - 1)} < e [ 18

Secondly, following Lemma 2.4, similar to the above,

S+ 1) ] (3.18)

£ [0v @) - wans @) <o [ Dyomp 2t gemy]. e
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Thirdly, by Lemma 3.2 and the fact that f(t) < ch;;1, we know

B [(o(n) ~wH @) < oo [ (2D 4 O 2, G20)

as nh8 — oco.
Finally, under the condition that sup, w(t) < 0o, one has

B [0 - 1Oy <o [ (D @@yt ey

as nh8 — oo.
Following from (3.18)—(3.21) and choosing h,, and 8,, such that:

nhe — oo, nh2 — 0o, hy =o0(0n),

we obtain
lim QW =0. (3.22)

n-—00

On the other hand, we write

2 2
0@ = & (M= O 10y 2 0,45, { MDY a0 <)
Q) 4 Q@) (3.23)

tH

Also by An(T) > 6, and the fact that

h(T) — h(T) if M(T)>8,,
h(T) — A, (T) = ! - e 3.24
(T) (T) { h(T)— 0, < h(T)-h(T), if h(T)<0,, (3.24)
we have 9
Q) < 6,28, {h(T) - HT)} . (3.25)
It follows from Lemma 3.3,
Q¥ < g2 {—cl— + thi} . (3.26)
nh,
Moreover, note that
Q) < 4I(W(T) < b,). (3.27)

Choosing nh,,62 — oo and h,, = 0(8,), it follows from (3.23), (3.26) and (3.27)
lim e2(T)Q® =o. (3.28)

Hence, combining (3.15) and (3.22) with (3.28), we know the step (ii) is true.
The task to remain is to prove (i).
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Note that f(2(T) < EX2, we have

@ <o | L0 @] +a [ 20+ @y
+e3d(T) { f(1>(T)}2 . (3.29)
Obviously
e (T)Q® < c4e?(T). (3.30)

Then by (3.15), we obtain

Eo{e(T) - o(T))? c{—ﬁﬁ—+umwwyw%—ﬂ9—+m®ww

1-W(T) 1 - F(T)
+e3d(T) { f<1>(T)}2 + cseX(T)
= M(T). (3.31)

Under the conditions of the Theorem 3.1, we know
Er [M(T)] < co. (3.32)
We have proved the step (i). The proof of the Theorem 3.1 is complete. d

Remark 3.1 If there is no censorship, in order to obtain the asymptotic optimality of
the proposed EB test, we only need the conditions that EA? < oo and E[f(X)] < oc.

4. Concluding Remarks

Although the conditions of Theorem 2.1 and Theorem 3.1 are a little complicated, it
is easy to verify that for a gamma prior g(\) = 1/T({)A " exp(—A)I(A > 0,1 > 0) and a
censoring distribution W(y) =1 -~ (y + 1) 7, where y > 0 and ¢y > [, all the conditions
of Theorem 2.1 and Theorem 3.1 are satisfied.

There are few papers dealing with the EB testing problem of hypothesis under censor-
ship. In this paper, when the historical samples X1, X, ..., X, and the present sample
X are both randomly censored from the right by a sequence Y1,Ys,...,Y, and Y with
a distribution function W, we propose an EB test firstly, under the condition that the
censoring distribution W is known and secondly, that it is unknown.

Under some suitable conditions, for the case that W is known, the convergence rate
of the proposed EB test can be very close to O(n~1/2). Liang (2000a) claimed that the
order of convergence rate is O(n=*%/ (5+3)) for a positive exponential family under the
assumption that the critical point, corresponding to the prior, is within an unknown
compact interval. Similar result also appears in Liang (2000b). It is not difficult to find
that the Bernstein’s inequality plays an important role in these two papers. However,
Bernstein’s inequality cannot work in our case since the data are censored.
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It is necessary to note that in this paper the proposed EB tests are not monotone.
If we make some assumptions on the critical point and take the monotonicity of e(t)
into account, then we can construct a monotone EB test which can improve the order
O(n=1/2) to be close to O(n~!) under some conditions.
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