• Title/Summary/Keyword: Elementary mathematics Gifted

Search Result 178, Processing Time 0.022 seconds

The Robot Education Program Based on Schoolwide Enrichment Model for Elementary School Students (학교전체 심화학습 모형에 기반한 초등로봇교육 프로그램)

  • Lee, YoungJun;Seo, YoungMin
    • The Journal of Korean Association of Computer Education
    • /
    • v.15 no.5
    • /
    • pp.33-41
    • /
    • 2012
  • Elementary school students should have many opportunities to find their abilities and talents. However, informatics education in Korea does not target the entire elementary school students, opportunities for informatics education are given only to some students. Unlike possibilities to find mathematics gifted students and science gifted students, opportunities to find informatics gifted students are very limited. This study aims to solve current problems through a robot education program based on SEM(Schoolwide Enrichment Model). Using modified curriculum and school enrichment cluster, robot programming education is implemented at the pilot school. The result shows that robot education program based on SEM improved creative potentials of elementary school students.

  • PDF

A Case Study on Instruction for Mathematically Gifted Children through The Application of Open-ended Problem Solving Tasks (개방형 과제를 활용한 수학 영재아 수업 사례 분석)

  • Park Hwa-Young;Kim Soo-Hwan
    • Communications of Mathematical Education
    • /
    • v.20 no.1 s.25
    • /
    • pp.117-145
    • /
    • 2006
  • Mathematically gifted children have creative curiosity about novel tasks deriving from their natural mathematical talents, aptitudes, intellectual abilities and creativities. More effect in nurturing the creative thinking found in brilliant children, letting them approach problem solving in various ways and make strategic attempts is needed. Given this perspective, it is desirable to select open-ended and atypical problems as a task for educational program for gifted children. In this paper, various types of open-ended problems were framed and based on these, teaming activities were adapted into gifted children's class. Then in the problem solving process, the characteristic of bright children's mathematical thinking ability and examples of problem solving strategies were analyzed so that suggestions about classes for bright children utilizing open-ended tasks at elementary schools could be achieved. For this, an open-ended task made of 24 inquiries was structured, the teaching procedure was made of three steps properly transforming Renzulli's Enrichment Triad Model, and 24 periods of classes were progressed according to the teaching plan. One period of class for each subcategories of mathematical thinking ability; ability of intuitional insight, systematizing information, space formation/visualization, mathematical abstraction, mathematical reasoning, and reflective thinking were chosen and analyzed regarding teaching, teaming process and products. Problem solving examples that could be anticipated through teaching and teaming process and products analysis, and creative problem solving examples were suggested, and suggestions about teaching bright children using open-ended tasks were deduced based on the analysis of the characteristic of tasks, role of the teacher, impartiality and probability of approaching through reflecting the classes. Through the case study of a mathematics class for bright children making use of open-ended tasks proved to satisfy the curiosity of the students, and was proved to be effective for providing and forming a habit of various mathematical thinking experiences by establishing atypical mathematical problem solving strategies. This study is meaningful in that it provided mathematically gifted children's problem solving procedures about open-ended problems and it made an attempt at concrete and practical case study about classes fur gifted children while most of studies on education for gifted children in this country focus on the studies on basic theories or quantitative studies.

  • PDF

Analysis of characteristics from meta-affect viewpoint on problem-solving activities of mathematically gifted children (수학 영재아의 문제해결 활동에 대한 메타정의적 관점에서의 특성 분석)

  • Do, Joowon;Paik, Suckyoon
    • The Mathematical Education
    • /
    • v.58 no.4
    • /
    • pp.519-530
    • /
    • 2019
  • According to previous studies, meta-affect based on the interaction between cognitive and affective elements in mathematics learning activities maintains a close mechanical relationship with the learner's mathematical ability in a similar way to meta-cognition. In this study, in order to grasp these characteristics phenomenologically, small group problem-solving cases of 5th grade elementary mathematically gifted children were analyzed from a meta-affective perspective. As a result, the two types of problem-solving cases of mathematically gifted children were relatively frequent in the types of meta-affect in which cognitive element related to the cognitive characteristics of mathematically gifted children appeared first. Meta-affects were actively acted as the meta-function of evaluation and attitude types. In the case of successful problem-solving, it was largely biased by the meta-function of evaluation type. In the case of unsuccessful problem-solving, it was largely biased by the meta-function of the monitoring type. It could be seen that the cognitive and affective characteristics of mathematically gifted children appear in problem solving activities through meta-affective activities. In particular, it was found that the affective competence of the problem solver acted on problem-solving activities by meta-affect in the form of emotion or attitude. The meta-affecive characteristics of mathematically gifted children and their working principles will provide implications in terms of emotions and attitudes related to mathematics learning.

Development and Utilization of Mathematics Teaching Materials for Gifted Class by the Use of Polyominoes and What if (not)? Strategy (폴리오미노에 What if (not)? 전략을 적용한 영재 학급용 수학 수업 소재 발굴과 활용)

  • Ku, Bon-Wang;Song, Sang-Hun
    • School Mathematics
    • /
    • v.13 no.1
    • /
    • pp.175-187
    • /
    • 2011
  • The purpose of this study is to develop and utilize various kinds of mathematics teaching materials for gifted class in elementary school by utilizing polyominoes and a what-if-not strategy. Blokus is used to let students understand the characteristics of polyominoes, and omok is utilized to let them grasp interior point. Thus, the activities that utilized the new materials, blokus and omok, are developed to teach Pick's theorem. Besides, recreation activities were additionally prepared to provide education in an easy, intriguing and creative manner. The findings of the study is as follows: First, each of the materials was utilized in a different manner when the students engaged in basic and enrichment learning. Second, the mathematically gifted students were able to discover Pick's theorem in the course of utilizing the materials that contained recreational elements. Third, the students were taught to foster their problem-solving skills about area, girth and interior point by making use of the materials that were designed to be linked to each other. Fourth, existing programs were just designed to attain particular objects, to be conducted at a fixed time and to cater to particular graders. Fifth, when the students made problems by making use of the what if (not) strategy and the materials, they responded in diverse ways and were able to apply them.

  • PDF

Meta-analysis of the Effects of Gifted-mathematics programs on Creativity Improvement (수학영재프로그램이 창의성 향상에 미치는 효과 메타분석)

  • Cho, Yun-Hee;Ko, Ho kyoung
    • Journal of Science Education
    • /
    • v.41 no.3
    • /
    • pp.499-518
    • /
    • 2017
  • In this study, the meta-analysis technique was applied to investigate the effectiveness of gifted-mathematics programs on development of creativity. Studies conducted the outcomes form the 20 studies were used for meta-analysis. Research questions are as follows; first, what is the overall effect size of the gifted mathematics programs on development of mathematical creativity. Second, what are effect sizes of sub-group(fluency, flexibility, originality) analysis. Third, compare the effect sizes of those in compliance with the grade and the class type. Results from data analysis are as follows. First, the overall effect size for studies related the gifted-mathematical programs was .66, which is high. Second, it was found that each sub-group differed from its effect on learning outcomes. Fluency(.76) was the highest of all, which was followed by flexibility(.60) and originality(.50) in a row. Lastly, the overall effect size for gifted elementary school students related the gifted-mathematical programs was .69, which is high than gifted middle school students was .46.

A Study on Discrete Mathematics Subjects Focused on the Network Problem for the Mathematically Gifted Students in the Elementary School (초등 영재교육에 적용 가능한 이산수학 주제의 내용 구성에 관한 소고 -네트워크 문제를 중심으로-)

  • Choi, Keun-Bae
    • School Mathematics
    • /
    • v.7 no.4
    • /
    • pp.353-373
    • /
    • 2005
  • The purpose of this paper is to analysis the basic network problem which can be applied to the mathematically gifted students in elementary school. Mainly, we discuss didactic transpositions of the double counting principle, the game of sprouts, Eulerian graph problem, and the minimum connector problem. Here the double counting principle is related to the handshaking lemma; in any graph, the sum of all the vertex-degree is equal to the number of edges. The selection of these subjects are based on the viewpoint; to familiar to graph theory, to raise algorithmic thinking, to apply to the real-world problem. The theoretical background of didactic transpositions of these subjects are based on the Polya's mathematical heuristics and Lakatos's philosophy of mathematics; quasi-empirical, proofs and refutations as a logic of mathematical discovery.

  • PDF

A Comparison on the Relations between Affective Characteristics and Mathematical Reasoning Ability of Elementary Mathematically Gifted Students and Non-gifted Students (초등 수학영재와 일반학생의 정의적 특성과 수학적 추론 능력과의 관계 비교)

  • Bae, Ji Hyun;Ryu, Sung Rim
    • Education of Primary School Mathematics
    • /
    • v.19 no.2
    • /
    • pp.161-175
    • /
    • 2016
  • The purpose of this study is to measure the differences in affective characteristics and mathematical reasoning ability between gifted students and non-gifted students. This study compares and analyzes on the relations between the affective characteristics and mathematical reasoning ability. The study subjects are comprised of 97 gifted fifth grade students and 144 non-gifted fifth grade students. The criterion is based on the questionnaire of the affective characteristics and mathematical reasoning ability. To analyze the data, t-test and multiple regression analysis were adopted. The conclusions of the study are synthetically summarized as follows. First, the mathematically gifted students show a positive response to subelement of the affective characteristics, self-conception, attitude, interest, study habits. As a result of analysis of correlation between the affective characteristic and mathematical reasoning ability, the study found a positive correlation between self-conception, attitude, interest, study habits but a negative correlation with mathematical anxieties. Therefore the more an affective characteristics are positive, the higher the mathematical reasoning ability are built. These results show the mathematically gifted students should be educated to be positive and self-confident. Second, the mathematically gifted students was influenced with mathematical anxieties to mathematical reasoning ability. Therefore we seek for solution to reduce mathematical anxieties to improve to the mathematical reasoning ability. Third, the non-gifted students that are influenced of interest of the affective characteristics will improve mathematical reasoning ability, if we make the methods to be interested math curriculum.

An Analysis on the Math Camp Programs for Elementary Gifted Students -In Case of the Education Centers for the Gifted in Seoul Metropolitan Office of Education- (초등 영재교육원 수학 영재캠프 프로그램 분석 -서울특별시교육청 산하 영재교육원 사례를 중심으로-)

  • Lim, Kyeong-Jin;Park, Man-Goo
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.14 no.1
    • /
    • pp.81-102
    • /
    • 2010
  • The purpose of this study was to analyze the content and design of the seven math camp programs for students of the education centers for the elementary gifted students. The analysis focused on the goals, content, and evaluations utilized in the math camp programs. The results of the study were as follows. First, there was no big difference between the goals set for each camp, and they mainly focused on the goals in affective domain. Second, the content of math camp programs was focused on enrichment rather than acceleration. Most of the programs were focused on geometry, whereas fewer programs were focused on measurement, probability and statistics. Based on the Analysis, we found that only nine out of 27 programs applied level-wised or individual exercise programs. Third, all centers for the mathematically gifted carried out evaluations of their math camp programs. However, a specific evaluation plan was not established for the math camp program plans. We suggested the direction of math camp programs as follows. First, the goals should reflect on the intended outcomes of the math camp programs. Also, the goals of math camp programs need to be distinctive from general education goals. Second, the programs should contain harmonious contents with enrichment and acceleration and must include various reactions and task commitment. The math camp programs need to include references and an appropriate information for the gifted students to encourage self-directed learning. Third, a more specific evaluation plan for math camp programs needs to be developed for effective education for the gifted students.

  • PDF

Identification and Selection the Mathematically Gifted Child on the Elementary School Level (초등 수학 영재의 판별과 선발)

  • 송상헌
    • Journal of Gifted/Talented Education
    • /
    • v.11 no.2
    • /
    • pp.87-106
    • /
    • 2001
  • Identification and selection the mathematically gifted child must be based on it's definition. So, we have to consider not only IQ or high ability in mathematical problem solving, but also mathematical creativity and mathematical task commitment. Furthermore, we must relate our ideas with the programs to develop each student's hidden potential. This study is focused on the discrimination of the candidates who would like to enter the elementary school level mathematics gifted education program. To fulfill this purpose, I considered the criteria, principles, methods, and tools. Identification is not exactly separate from selection and education. So, it is important to have long-term vision and plan to identify the mathematically gifted students.

  • PDF

A Study on Elementary Gifted Children's Mathematical Belief (초등학교 영재교육대상자의 수학적 신념에 대한 연구)

  • Park, SungSun
    • Journal of Gifted/Talented Education
    • /
    • v.23 no.6
    • /
    • pp.947-963
    • /
    • 2013
  • This study investigated the difference of mathematical beliefs between common children and the gifted children, and then the effect of current mathematics gifted education on gifted children's mathematical belief. Gifted children from institution for gifted education and school based gifted classroom, and common children from regular classroom from S-city office of education in Gyenggi province were studied for this study. The results of this study was as follows. First, there was positive correlation between mathematics performance and mathematical belief. Second, common children and gifted children had significant difference in the degree of mathematical belief. And also, mathematically gifted students had much stronger and positive mathematical belief than common students before starting gifted education program. Third, there was no significant difference in common children and gifted children on the mathematical belief after they receive gifted education, but there were negative changes in gifted children from institution for gifted education on the mathematical belief after receiving gifted education.