• 제목/요약/키워드: Electroplating method

검색결과 143건 처리시간 0.025초

급속 열처리 방법에 의한 Sn 솔더 범프의 리플로와 금속간 화합물 형성 (Reflow of Sn Solder Bumps using Rapid Thermal Annealing(RTA) method and Intermetallic Formation)

  • 양주헌;조해영;김영호
    • 마이크로전자및패키징학회지
    • /
    • 제15권4호
    • /
    • pp.1-7
    • /
    • 2008
  • 본 실험에서는 두가지 리플로 시스템에 따라 솔더 범프 내에 생성되는 금속간 화합물의 성장거동에 대하여 연구하였다. 산화막이 증착된 Si 기판 위에 직류 마그네트론 스퍼터링을 이용하여 Ti(50 nm), Cu($1{\mu}m$), Au(50 nm), Ti(50 nm)의 박막을 형성한 후, 전해 도금을 이용하여 $5{\mu}m$두께의 Cu 범프와 $20{\mu}m$ 두께의 Sn 범프를 형성하였다. 급속열처리장치(RTA)와 일반 리플로를 이용하여 전해 도금으로 형성된 Sn($20{\mu}m$)/Cu($5{\mu}m$) 범프를 동일한 온도에서 각각 리플로 공정을 진행한 결과, 급속열처리장치를 이용하여 리플로를 할 때, 플럭스를 사용하지 않고 범프로 형성할 수 있었으며, 솔더 계면에 형성된 금속간 화합물이 일반 리플로의 경우보다 더 얇게 형성되었다.

  • PDF

황산용액(黃酸溶液)으로부터 이온교환수지(交換樹脂) Lewatit TP 220에 의한 니켈의 회수(回收) (Recovery of Nickel from sulfuric acid solution using Lewatit TP 220 ion exchange resin)

  • 강남희;박경호
    • 자원리싸이클링
    • /
    • 제20권6호
    • /
    • pp.28-36
    • /
    • 2011
  • 황산용액 중에 존재하는 니켈을 회수하기 위해 이온교환수지법을 이용한 기초연구를 수행하였다. 제조된 모의 니켈(Ni)용액에 독일 Lanxess사(社)의 Lewatit Monoplus TP 220를 이용하여 회분식 실험을 하였다. 흡착반응에 영향을 미치는 온도, 교반속도, 반응시간, pH, 이온교환수지 양, 니켈이온농도 등에 대해 고찰하였다. 초기 pH(2.0~5.0)와 교반속도는 니켈의 흡착에 거의 영향을 미치지 않았으며, 평형에 도달하기 위하여 72시간의 시간이 필요했다. 평형실험결과 Freundlich 흡착등온식에 적합하였고, 흡착반응속도는 유사 2차 반응 모델(pseudo-second order)로 잘 모사되었다. 한편 니켈을 함유한 실제 도금세정폐액의 흡착 실험을 행하여 모의용액의 흡착거동과 비교하였고, 흡착된 니켈은 황산 농도가 높아짐에 따라 수지로부터 효과적으로 용리되었다.

고효율, 저가화 태양전지에 적합한 Ni/Cu 금속 전극 간격에 따른 특성 평가 (Investigation of the Ni/Cu metal grid space for high-effiency, low cost crystlline silicon solar cells)

  • 김민정;이지훈;조경연;이수홍
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 춘계학술발표대회 논문집
    • /
    • pp.225-229
    • /
    • 2009
  • The front metal contact is one of the most important element influences in efficiency in the silicon solar cell. First of all selective of the material and formation method is important in metal contacts. Commercial solar cells with screen-printed contacts formed by using Ag paste process is simple relatively and mass production is easy. But it suffer from a low fill factor and a high shading loss because of high contact resistance. Besides Ag paste too expensive. because of depends income. This paper applied for Ni/Cu metallization replace for paste of screen printing front metal contact. Low cost Ni and Cu metal contacts have been formed by using electroless plating and electroplating techniques to replace the screen-printed Ag contacts. Ni has been proposed as a suitable silicide for the salicidation process and is expected to replace conventional silicides. Copper is a promising material for the electrical contacts in solar cells in terms of conductivity and cost. In experiments Ni/Cu metal contact applied same grid formation of screen-printed solar cell. And it has variation of different grid spacing. It was verified that the wide spacing of grid finger could increase the series resistance also the narrow spacing of grid finger also implies a grid with a higher density of grid fingers. Through different grid spacing found alteration of efficiency.

  • PDF

3D Lithography using X-ray Exposure Devices Integrated with Electrostatic and Electrothermal Actuators

  • Lee, Kwang-Cheol;Lee, Seung S.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제2권4호
    • /
    • pp.259-267
    • /
    • 2002
  • We present a novel 3D fabrication method with single X-ray process utilizing an X-ray mask in which a micro-actuator is integrated. An X-ray absorber is electroplated on the shuttle mass driven by the integrated micro-actuator during deep X-ray exposures. 3D microstructures are revealed by development kinetics and modulated in-depth dose distribution in resist, usually PMMA. Fabrication of X-ray masks with integrated electrothermal xy-stage and electrostatic actuator is presented along with discussions on PMMA development characteristics. Both devices use $20-\mu\textrm{m}$-thick overhanging single crystal Si as a structural material and fabricated using deep reactive ion etching of silicon-on-insulator wafer, phosphorous diffusion, gold electroplating, and bulk micromachining process. In electrostatic devices, $10-\mu\textrm{m}-thick$ gold absorber on $1mm{\times}1mm$ Si shuttle mass is supported by $10-\mu\textrm{m}-wide$, 1-mm-long suspension beams and oscillated by comb electrodes during X-ray exposures. In electrothermal devices, gold absorber on 1.42 mm diameter shuttle mass is oscillated in x and y directions sequentially by thermal expansion caused by joule heating of the corresponding bent beam actuators. The fundamental frequency and amplitude of the electrostatic devices are around 3.6 kHz and $20\mu\textrm{m}$, respectively, for a dc bias of 100 V and an ac bias of 20 VP-P (peak-peak). Displacements in x and y directions of the electrothermal devices are both around $20{\;}\mu\textrm{m}$at 742 mW input power. S-shaped and conical shaped PMMA microstructures are demonstrated through X-ray experiments with the fabricated devices.

Room-temperature Preparation of Al2O3 Thick Films by Aerosol Deposition Method for Integrated RE Modules

  • Tsurumi, Takaaki;Nam, Song-Min;Mori, Naoko;Kakemoto, Hirofumi;Wada, Satoshi;Akedo, Jun
    • 한국세라믹학회지
    • /
    • 제40권8호
    • /
    • pp.715-719
    • /
    • 2003
  • The Aerosol Deposition (AD) process will be proposed as a new fabrication technology for the integrated RF modules. $\alpha$-A1$_2$O$_3$ thick films were successfully grown on glass and Al substrates at room temperature by the AD process. Relative dielectric permittivity and loss tangent of the $Al_2$O$_3$ thick films on Al showed 9.5 and 0.005, respectively. To form microstrip lines on aerosol-deposited A1903 thick films, copper electroplating and lithography processes were employed, and the square-type cross section with sharp edges could be obtained. Low-pass LC filters with 10 GHz cutoff frequency were simulated by an electromagnetic analysis, exhibiting the validity of the AD process as a fabrication technology f3r integrated RF modules.

해수환경중 전착원리에 의해 형성시킨 환경친화적인 코팅막의 특성 분석 (Properties Analysis of Environment Friendly Coating Films Formed by Using Electrodeposition Principle on Seawater)

  • 백상민;이찬식;김기준;문경만;이명훈
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 후기학술대회논문집
    • /
    • pp.196-197
    • /
    • 2005
  • Cathodic protection is one of the successful ways to prevent corrosion of steel structures in marine environments. The unique feature of cathodic protection in seawater is the formation of calcareous deposits on cathodic metal surface. The formation principles of calcareous deposit seawater had been known for a long time. That is, cathodic reduction reactions associated with cathodic protection in seawater generate $OH^-$ at the metal surface in accordance with the formular ; 1/2 $O_2$ + $H_2O$ + $2e^-$ $2OH^-$ and $2H_2O$ + $2e^-$ ${\rightarrow}$ $H_2$ + $2OH^-$. These reactions increase the pH at the metal / seawater interface. The high pH causes precipitation of $Mg(OH)_2$ and $CaCO_3$ in accordance with the formular ; $Mg^{2+}$ + $2(OH)^-$ ${\rightarrow}$ $Mg(OH)_2$ and $Ca^{2+}$ + $HCO_3^-$ + $OH^-$ ${\rightarrow}$ $H_2O$ + $CaCO_3$. These are typically the main compounds in calcareous deposits. It obviously has several advantages compared to the conventional coatings, since the environment-friendly calcareous deposit coating is formed by the elements($Mg^{2+}$, $Ca^{2+}$) naturally present in seawater. In this study, environmental friendly calcareous deposit films were prepared on steel plates by electro plating technic in natural seawater. The influence of current density on composition ratio, structure and morphology of the coated films were investigated by scanning electron microscopy formation process of calcareous deposits films in natural seawater. And we confirmed the properties of all the films can be improved greatly by controlling the material structure and morphology with effective use of the electroplating method in natural seawater.

  • PDF

Double rectangular spiral inductor의 제조에 관한 연구

  • 김충식;신동훈;정종한;남승의;김형준
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 1999년도 제17회 학술발표회 논문개요집
    • /
    • pp.144-144
    • /
    • 1999
  • 최근 국내 반도체 기술의 비약적인 발전으로 전자 기기 전반에 소형화, 고주파화, 고기능화 등이 진행되는데 반해, 반도체 소자등에 전원을 공급하거나 회로 전체를 운용하는 전기 신호를 변조.증폭시키는데 반해, 반도체 소자등에 전원을 공급하거나 회로 전체를 운용하는 전기신호를 변조.증폭시키는 인덕터, 트랜스 포머와 같은 수동 자기 소자는 아직도 3차원 벌크 형태로 사용되고 있다. 일본을 중심으로 각국에서는 자기 소자의 박막.소형화에 대한 다각도의 연구가 진행되었으나 국내서는 아직 미미한 실정이다. 따라서 고집적 전원 공급 장치나 지능 센서 등에 반도체와 자기 소자의 사용 주파수 대역과 크기가 통합된 반도체-자성체 IC(semiconductor-magnetic integrated circuit)의 필요성이 절실히 요구되고 있다. 현재 사용중인 벌크형 인덕터나, 트랜스 포머의 경우 10NHz이상의 고주파 대역에는 응용되지 못하고 있다. 이는 적용된 자성체가 페라이트(ferrite)로서 초투자율은 크지만 고주파대역에서의 공진 현상에 의해 저투자율을 나타내고, 포화 자속밀도가 낮기 때문이다. 이러한 페라이트 자성체의 대체품으로 주목받고 있는 것이 Fe, Co계 고비저항 자성마이다. 그러나 Co는 낮은 포화자속밀도를 나타내기 때문에 이러한 조건을 충족시키는 자성막으로 Fe계 미세 결정막을 사용하였다. 본 연구에서는 선택적 전기 도금법(selective electroplating method)과 LIGA like process를 이용하여 공시형 인덕터(air core inductor)의 라이브러리(library)를 구축한 뒤, 고주파 대역에서의 우수한 연자기 특성을 가지는 Ti/FeTaN막을 적용한 자기 박막 인덕터(magnetic thin film inductor)를 제작하여 비교.분석하였다. 제조된 인덕터의 특성 추정은 impedence analyzer를 이용하여 주파수에 따른 저항(resistance), 인덕턴스(inductance)를 측정, 계산한 성능지수(quality factor)로서 인덕터의 성능을 평가하였다. 제조된 박막 인덕터의 코일 형상은 5턴의 double rectangular spiral 구조였으며, 적용된 자성막의 유효 투자율9effective permeability)은 1500, 자성막, 절연막 그리고 코일의 두께는 각각 2$\mu\textrm{m}$, 1$\mu\textrm{m}$, 20$\mu\textrm{m}$이며 코일의 폭은 100$\mu\textrm{m}$, 코일간의 간격은 100$\mu\textrm{m}$였다. 제조된 박막 인덕터는 5MHz에서 1.0$\mu$H의 인덕턴스를 나타내었으며 dc current dervability는 100mA까지 유지되었다.

  • PDF

RF-MEMS 소자의 웨이퍼 레벨 밀봉 패키징을 위한 열압축 본딩 (Thermocompression bonding for wafer level hermetic packaging of RF-MEMS devices)

  • 박길수;서상원;최우범;김진상;남산;이종흔;주병권
    • 센서학회지
    • /
    • 제15권1호
    • /
    • pp.58-64
    • /
    • 2006
  • In this study, we describe a low-temperature wafer-level thermocompression bonding using electroplated gold seal line and bonding pads by electroplating method for RF-MEMS devices. Silicon wafers, electroplated with gold (Au), were completely bonded at $320^{\circ}C$ for 30 min at a pressure of 2.5 MPa. The through-hole interconnection between the packaged devices and external terminal did not need metal filling process and was made by gold films deposited on the sidewall of the throughhole. This process was low-cost and short in duration. Helium leak rate, which is measured to evaluate the reliability of bonded wafers, was $2.7{\pm}0.614{\times}10^{-10}Pam^{3}/s$. The insertion loss of the CPW packaged was $-0.069{\sim}-0.085\;dB$. The difference of the insertion loss between the unpackaged and packaged CPW was less than -0.03. These values show very good RF characteristics of the packaging. Therefore, gold thermocompression bonding can be applied to high quality hermetic wafer level packaging of RF-MEMS devices.

태양열 집열기에 사용될 선택흡수막의 성능 평가 (Performance Evaluation of Selective Coatings for Solar Thermal Collectors)

  • 이길동
    • 한국태양에너지학회 논문집
    • /
    • 제32권4호
    • /
    • pp.43-50
    • /
    • 2012
  • Metal-metal oxide (M-M oxide) cermet solar selective coatings with a double cermet layer film structure were deposited on the Al-deposited glass substrate by using a directed current (DC) magnetron sputtering technology. M oxide (CrO and ZrO) was used as the ceramic component in the cermets, and Cr and Zr used as the metallic components. In addition, black Cr (Cr-$Cr_2O_3$ cermet) solar selective coatings were deposited on the Ni-plated Cu substrate by using a electroplating method for comparison. The thermal stability tests were carried out for performance evaluation of solar coatings. Reflectance measurements were used to evaluate both solar absorptance(${\alpha}$) and thermal emittance (${\epsilon}$) of the solar coatings before and after thermal testing by using a spectrometer. Optical properties of optimized cermet solar coatings were ${\alpha}{\simeq}0.94-0.96$ and ${\epsilon}{\simeq}0.1$ ($100^{\circ}C$). The results of thermal stability test of M-M oxide solar coatings showed that the Cr-CrO cermet solar selective coatings were more stable than the Zr-ZrO cermet selective coatings at temperature of both $400^{\circ}C$ in air and $450^{\circ}C$ in vacuum. The black Cr solar selective coatings were degraded in air at temperature of $400^{\circ}C$. The main optical degradation modes of these coatings were diffusion of metal atoms, and oxidation.

나노결정질 Ni-W 합금전착의 내부응력에 미치는 공정조건 변수의 영향 (Influences of Electrodeposition Variables on the Internal Stess of Nanocrystalline Ni-W Films)

  • 김경태;이정자;황운석
    • Corrosion Science and Technology
    • /
    • 제11권6호
    • /
    • pp.275-279
    • /
    • 2012
  • Ni-W alloy deposits have lately attracted the interest as an alternative surface treatment method for hard chromium electrodeposits because of higher wear resistance, hardness at high temperature, and corrosion resistance. This study deals with influences of process variables, such as electodeposition current density, plating temperature and pH, on the internal stress of Ni-W nanocrystalline deposits. The internal stress was increased with increasing the applied current density. With increasing applied current density, the grain size of the deposit decreases and concentration of hydrogen in the deposit increases. The subsequent release of the hydrogen results in shrinkage of the deposit and the introduction of tensile stress in the deposit. Consequently, for layers deposited at high current density, cracking occurs readily owing to high tensile stress value. By increasing the temperature of the electrodeposition from $60^{\circ}C$ to $80^{\circ}C$, the internal stress was decreased. It seems that an increase in the number of active ions overcoming the activation energy at elevated temperature caused a decline in the concentration polarization and surface diffusion. It decreased the level of hydrogen absorption due to the lessened hydrogen evolution reaction. Therefore, the lower level of hydrogen absorption degenerated the hydride on the surface of the electrode, resulting in the reduction of the internal stress of the deposits. By increasing the pH of the electrodeposition from 5.6 to 6.8, the internal stress in the deposits were slightly decreased. It is considered that the decrease in internal stess of deposits was due to supply of W complex compound in cathode surface, and hydrogen ion resulted from decrease of activity.