• Title/Summary/Keyword: Electronic information room

Search Result 156, Processing Time 0.033 seconds

Characteristics of amorphous IZTO-based transparent thin film transistors (비정질 IZTO기반의 투명 박막 트렌지스터 특성)

  • Shin, Han-Jae;Lee, Keun-Young;Han, Dong-Cheul;Lee, Do-Kyung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.151-151
    • /
    • 2009
  • Recently, there has been increasing interest in amorphous oxide semiconductors to find alternative materials for an amorphous silicon or organic semiconductor layer as a channel in thin film transistors(TFTs) for transparent electronic devices owing to their high mobility and low photo-sensitivity. The fabriction of amorphous oxide-based TFTs at room temperature on plastic substrates is a key technology to realize transparent flexible electronics. Amorphous oxides allows for controllable conductivity, which permits it to be used both as a transparent semiconductor or conductor, and so to be used both as active and source/drain layers in TFTs. One of the materials that is being responsible for this revolution in the electronics is indium-zinc-tin oxide(IZTO). Since this is relatively new material, it is important to study the properties of room-temperature deposited IZTO thin films and exploration in a possible integration of the material in flexible TFT devices. In this research, we deposited IZTO thin films on polyethylene naphthalate substrate at room temperature by using magnetron sputtering system and investigated their properties. Furthermore, we revealed the fabrication and characteristics of top-gate-type transparent TFTs with IZTO layers, seen in Fig. 1. The experimental results show that by varying the oxygen flow rate during deposition, it can be prepared the IZTO thin films of two-types; One a conductive film that exhibits a resistivity of $2\times10^{-4}$ ohm${\cdot}$cm; the other, semiconductor film with a resistivity of 9 ohm${\cdot}$cm. The TFT devices with IZTO layers are optically transparent in visible region and operate in enhancement mode. The threshold voltage, field effect mobility, on-off current ratio, and sub-threshold slope of the TFT are -0.5 V, $7.2\;cm^2/Vs$, $\sim10^7$ and 0.2 V/decade, respectively. These results will contribute to applications of select TFT to transparent flexible electronics.

  • PDF

Characteristics of IGZO Thin Film Transistor Deposited by DC Magnetron Sputtering (DC 마그네트론 스퍼터링 방법을 이용하여 증착한 IGZO 박막트랜지스터의 특성)

  • Kim, Sung-Yeon;Myoung, Jae-Min
    • Korean Journal of Materials Research
    • /
    • v.19 no.1
    • /
    • pp.24-27
    • /
    • 2009
  • Indium Gallium Zinc Oxide (IGZO) thin films were deposited onto 300 nm-thick oxidized Si substrates and glass substrates by direct current (DC) magnetron sputtering of IGZO targets at room temperature. FESEM and XRD analyses indicate that non-annealed and annealed IGZO thin films exhibit an amorphous structure. To investigate the effect of an annealing treatment, the films were thermally treated at $300^{\circ}C$ for 1hr in air. The IGZO TFTs structure was a bottom-gate type in which electrodes were deposited by the DC magnetron sputtering of Ti and Au targets at room temperature. The non-annealed and annealed IGZO TFTs exhibit an $I_{on}/I_{off}$ ratio of more than $10^5$. The saturation mobility and threshold voltage of nonannealed IGZO TFTs was $4.92{\times}10^{-1}cm^2/V{\cdot}s$ and 1.46V, respectively, whereas these values for the annealed TFTs were $1.49{\times}10^{-1}cm^2/V{\cdot}$ and 15.43V, respectively. It is believed that an increase in the surface roughness after an annealing treatment degrades the quality of the device. The transmittances of the IGZO thin films were approximately 80%. These results demonstrate that IGZO thin films are suitable for use as transparent thin film transistors (TTFTs).

Optimization of Electrical and Optical Properties of a-IZO Thin Film for High-Efficiency Solar Cells (고효율 태양전지용 a-IZO 박막의 전기적 및 광학적 특성 최적화에 관한 연구 )

  • Somin Park;Sungjin Jeong;Jiwon Choi;Youngkuk Kim;Junsin Yi
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.1
    • /
    • pp.49-55
    • /
    • 2023
  • The deposition of indium zinc oxide (IZO) thin films was carried out on substrate at room temperature by RF magnetron sputtering. The effects of substrate temperature, RF power and deposition pressure were investigated with respect to physical and optical properties of films such as deposition rate, electrical properties, structure, and transmittance. As the RF power increases, the resistivity gradually decreases, and the transmittance slightly decreases. For the variation of deposition pressure, the resistivity greatly increases, and the transmittance is decreased with increasing deposition pressure. As a result, it was demonstrated that an IZO film with the resistivity of 3.89 × 10-4 Ω∙cm, the hole mobility of 51.28 cm2/Vs, and the light transmittance of 86.89% in the visible spectrum at room temperature can be prepared without post-deposition annealing.

High Performance InGaZnO Thin Film Transistor by Atmospheric Pressure Ar Plasma Treatment (대기압 아르곤 플라즈마 처리를 통한 IGZO TFT의 전기적 특성 향상 연구)

  • Jeong, Byung-Jun;Jeong, Jun-Kyo;Park, Jung-Hyun;Kim, Yu-Jung;Lee, Hi-Deok;Choi, Ho-Suk;Lee, Ga-Won
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.4
    • /
    • pp.59-62
    • /
    • 2017
  • In this paper, atmospheric pressure plasma treatment was proposed for high performance indium gallium zinc oxide thin film transistor (IGZO TFT). RF Ar plasma treatment is performed at room temperature under atmospheric pressure as a simple and cost effective channel surface treatment method. The experimental results show that field effect mobility can be enhanced by $2.51cm^2/V{\cdot}s$ from $1.69cm^2/V{\cdot}s$ to $4.20cm^2/V{\cdot}s$ compared with a conventional device without plasma treatment. From X-ray photoelectron spectroscopy (XPS) analysis, the increase of oxygen vacancies and decrease of metal-oxide bonding are observed, which suggests that the suggested atmospheric Ar plasma treatment is a cost-effective useful process method to control the IGZO TFT performance.

  • PDF

A Study on the High Temperature Characteristics of 100V-Class LDMOSFET under various Drift Region Length (고온 동작 환경에서 드리프트 영역 길이 변화에 따른 100V급 LDMOSFET의 전기적 특성에 관한 연구)

  • Choi, Chul;Kim, Do-Hyung;Koo, Yong-Seo;An, Chul
    • Proceedings of the IEEK Conference
    • /
    • 2000.06b
    • /
    • pp.278-281
    • /
    • 2000
  • In this study, the electrical characteristics of 100V -Class LDMOSFET for high temperature applications such as electronic control systems of automobiles and motor driver were investigated. Measurement data are taken over wide range of temperature(300K-500K) and various drift region length(6.6$\mu\textrm{m}$-12.6$\mu\textrm{m}$). In high temperature condition(>450K), drain current decreased over 50%, and specific on-resistance increased about twice in comparison with room temperature. Moreover the ratio R$\sub$on//BV, a figure of merit of the device, increased with increasing temperature.

  • PDF

Electronic and optical devices based on semiconductor nanowires (반도체 나노선 전자소자 및 광전소자응용)

  • Kil, Sang-Cheol;Sim, Sung-Kju;Kim, Sang-Sig
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.260-263
    • /
    • 2004
  • During the last few years, there have been many efforts on the fabrication of electronic and optical devices based on semiconductor nanowires. Room-temperature ultraviolet lasing in GaN nanowire, ultraviolet light sensing in ZnO nanowire, and dramatically improved hall mobility in Si nanowire have been demonstrated in this article. The studies on semiconductor nanowire based electronic and optical device is reviewed.

  • PDF

Room Temperature Preparation of Poly-Si Thin Films by IBE with Substrate Bias Method

  • Cho, Byung-Yoon;Yang, Sung- Chae;Han, Byoung-Sung;Lee, Jung-Hui;Yatsui Kiyoshi
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.2
    • /
    • pp.57-62
    • /
    • 2005
  • Using intense pulsed ion beam evaporation technique, we have succeeded in the preparation of poly crystalline silicon thin films without impurities on silicon substrate. Good crystallinity and high deposition rate have been achieved without heating the substrate by using lEE. The crystallinity of poly-Si film has been improved with the high density of the ablation plasma. The intense diffraction peaks of poly-Si thin films could be obtained by using the substrate bias system. The crystallinity and the deposition rate of poly-Si thin films were increased by applying (-) bias voltage for the substrate.

Effect of the YAG with fracture toughness and electric conductive of $\beta$-Sic-$TiB_2$ ($\beta$-Sic-$TiB_2$복합체의 파괴인성과 전기전도도젠 미치는 YAG의 영향)

  • Yoon, Se-Won;Ju, Jin-Young;Shin, Yong-Deok;Yeo, Dong-Hun;Park, Ki-Yub
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1545-1547
    • /
    • 2000
  • The mechanical and electrical properties of the hot-pressed and annealed $\beta$-Sic-$TiB_2$ electroconductive ceramic composites were investigated as function of the liquid forming additives of $Al_{2}O_{3}+Y_{2}O_3$. Phase analysis of composites by XRD revealed $\alpha$-SiC(6H), $TiB_2$, and YAG($Al_{5}Y_{3}O_{12}$). The relative density and the mechanical properties of composites were increased with increasing $Al_{2}O_{3}+Y_{2}O_3$ contents because YAG of reaction between $Al_{2}O_3$ and $Y_{2}O_3$ was increased. The Flexural strength showed the highest value of 432.5MPa for composites added with l2wt% $Al_{2}O_{3}+Y_{2}O_3$ additives at room temperature. Owing to crack deflection, crack bridging, phase transition and YAG of fracture toughness mechanism. the fracture toughness showed 7.1MPa${\cdot}m^{1/2}$. For composites added with l2wt% $Al_{2}O_{3}+Y_{2}O_3$ additives at room temperature The electrical resistivity and the resistance temperature coefficient respectively showed the lowest of 6.0${\sim}10^{-4}{\Omega}{\cdot}$ cm and 3.1${\times}10^{-3}/^{\circ}C$ for composite added with l2wt% $Al_{2}O_{3}+Y_{2}O_3$ additives at room temperature. The electrical resistivity of the composites was all positive temperature coefficient resistance(PTCR) in the temperature range of 25$^{\circ}C$ to 700$^{\circ}C$.

  • PDF

Microstructure Analysis of Fe Thin Films Prepared by Ion Beam Deposition (이온빔 증착법에 의해 제조된 철박막의 미세조직 분석)

  • Kim, Ka Hee;Yang, Jun-Mo;Ahn, Chi Won;Seo, Hyun Sang;Kang, Il-Suk;Hwang, Wook-Jung
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.7
    • /
    • pp.458-463
    • /
    • 2008
  • High purity Fe thin films were prepared by the ion beam deposition method with $^{56}Fe^{+}$ions on the Si substrate at the room temperature. The Fe thin films were deposited at the ion energy of 50 eV and 100 eV. Microstructural properties were investigated on the atomic scale using high-resolution transmission electron microscopy (HRTEM). It was found that the Fe thin film obtained with the energy of 50 eV having an excellent corrosion resistance consists of the amorphous layer of ~15 nm in thickness and the bcc crystalline layer of about 30 nm in grain size, while the thin film obtained with the energy of 100 eV having a poor corrosion resistance consists of little amorphous layer and the defective crystalline layer. Furthermore the crystal structures and arrangements of the oxide layers formed on the Fe thin films were analyzed by processing of the HRTEM images. It was concluded that the corrosion behavior of Fe thin films relates to the surface morphology and the crystalline structure as well as the degree of purification.

A Study on Characteristics of Current-Voltage Relation by sizes for Double Gate MOSFET (DGMOSFET의 크기에 따른 전류-전압특성변화에 관한 연구)

  • Jung, Hak-Kee;Na, Young-Il;Lee, Jae-Hyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.884-886
    • /
    • 2005
  • In this paper, we have investigated characteristics of current-voltage for double gate MOSFET with main gate and side gate. Investigated current-voltage characteristics of channel length changed len호 of channel from 1${\mu}$m to 3${\mu}$m. Also, compare and analyzed characteristics of changed of operation temperature changing current that is dignity. gate voltage could know 2V that is superior than device characteristics of current voltage characteristic in 77K acts in room temperature when approved.

  • PDF