• 제목/요약/키워드: Electronic devices

Search Result 4,580, Processing Time 0.031 seconds

The Effect of Grain Size and Film Thickness on the Thermal Expansion Coefficient of Copper and Silver Thin Films (구리와 은 박막의 열팽창계수에 미치는 결정립 크기와 박막 두께의 영향)

  • Hwang, Seulgi;Kim, Youngman
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.12
    • /
    • pp.1064-1069
    • /
    • 2010
  • Thin films have been used in a large variety of technological applications such as solar cells, optical memories, photolithographic masks, protective coatings, and electronic contacts. If thin films experience frequent temperature changes, thermal stresses are generated due to the difference in the coefficient of thermal expansion between the film and substrate. Thermal stresses may lead to damage or deformation in thin film used in electronic devices and micro-machined structures. Thus, knowledge of the thermomechanical properties of thin films, such as the coefficient of thermal expansion, is an important issue in determining the stability and reliability of the thin film devices. In this study, thermal cycling of Cu and Ag thin films with various microstructures was employed to assess the coefficient of thermal expansion of the films. The result revealed that the coefficient of thermal expansion (CTE) of the Cu and Ag thin films increased with an increasing grain size. However, the effect of film thickness on the CTE did not show a remarkable difference.

Electrical Characteristics of and Temperature Distribution in Chalcogenide Phase Change Memory Devices Having a Self-Aligned Structure (자기정렬구조를 갖는 칼코겐화물 상변화 메모리 소자의 전기적 특성 및 온도 분포)

  • Yoon, Hye Ryeon;Park, Young Sam;Lee, Seung-Yun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.6
    • /
    • pp.448-453
    • /
    • 2019
  • This work reports the electrical characteristics of and temperature distribution in chalcogenide phase change memory (PCM) devices that have a self-aligned structure. GST (Ge-Sb-Te) chalcogenide alloy films were formed in a self-aligned manner by interdiffusion between sputter-deposited Ge and $Sb_2Te_3$ films during thermal annealing. A transmission electron microscopy-energy dispersive X-ray spectroscopy (TEM-EDS) analysis demonstrated that the local composition of the GST alloy differed significantly and that a $Ge_2Sb_2Te_5$ intermediate layer was formed near the $Ge/Sb_2Te_3$ interface. The programming current and threshold switching voltage of the PCM device were much smaller than those of a control device; this implies that a phase transition occurred only in the $Ge_2Sb_2Te_5$ intermediate layer and not in the entire thickness of the GST alloy. It was confirmed by computer simulation, that the localized phase transition and heat loss suppression of the GST alloy promoted a temperature rise in the PCM device.

Bio-Piezoelectric Generator with Silk Fibroin Films Prepared by Dip-Coating Method (딥코팅에 의한 실크 피브로인막으로 제조한 바이오 압전발전기)

  • Kim, Min-Soo;Park, Sang-Shik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.6
    • /
    • pp.487-494
    • /
    • 2021
  • Piezoelectric generators use direct piezoelectric effects that convert mechanical energy into electrical energy. Many studies were attempted to fabricate piezoelectric generators using piezoelectrics such as ZnO, PZT, PVDF. However, these various inorganic/organic piezoelectric materials are not suitable for bio-implantable devices due to problems such as brittleness, toxicity, bio-incompatibility, bio-degradation. Thus, in this paper, piezoelectric generators were prepared using a silk fibroin film which is bio-compatible by dip-coating method. The silk fibroin films are a mixed state of silk I and silk II having stable β-sheet type structures and shows the d33 value of 8~10 pC/N. There was a difference in output voltages according to the thickness. The silk fibroin generators, coated 10 times and 20 times, revealed the power density of 16.07 μW/cm2 and 35.31 μW/cm2 using pushing tester, respectively. The silk fibroin generators are sensitive to various pressure levels, which may arise from body motions such as finger tapping, foot pressing, wrist shaking, etc. The silk fibroin piezoelectric generators with bio-compatibility shows the applicability as a low-power implantable piezoelectric generator, healthcare monitoring service, and biotherapy devices.

Real-time Camera and Video Streaming Through Optimized Settings of Ethernet AVB in Vehicle Network System

  • An, Byoungman;Kim, Youngseop
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.8
    • /
    • pp.3025-3047
    • /
    • 2021
  • This paper presents the latest Ethernet standardization of in-vehicle network and the future trends of automotive Ethernet technology. The proposed system provides design and optimization algorithms for automotive networking technology related to AVB (Audio Video Bridge) technology. We present a design of in-vehicle network system as well as the optimization of AVB for automotive. A proposal of Reduced Latency of Machine to Machine (RLMM) plays an outstanding role in reducing the latency among devices. RLMM's approach to real-world experimental cases indicates a reduction in latency of around 41.2%. The setup optimized for the automotive network environment is expected to significantly reduce the time in the development and design process. The results obtained in the study of image transmission latency are trustworthy because average values were collected over a long period of time. It is necessary to analyze a latency between multimedia devices within limited time which will be of considerable benefit to the industry. Furthermore, the proposed reliable camera and video streaming through optimized AVB device settings would provide a high level of support in the real-time comprehension and analysis of images with AI (Artificial Intelligence) algorithms in autonomous driving.

Effect of Recombination and Decreasing Low Current on Barrier Potential of Zinc Tin Oxide Thin-Film Transistors According to Annealing Condition

  • Oh, Teresa
    • Journal of information and communication convergence engineering
    • /
    • v.17 no.2
    • /
    • pp.161-165
    • /
    • 2019
  • In this study, zinc tin oxide (ZTO) thin-film transistors are researched to observe the correlation between the barrier potential and electrical properties. Although much research has been conducted on the electronic radiation from Schottky contacts in semiconductor devices, research on electronic radiation that occurs at voltages above the threshold voltage is lacking. Furthermore, the current phenomena occurring below the threshold voltage need to be studied. Bidirectional transistors exhibit current flows below the threshold voltage, and studying the characteristics of these currents can help understand the problems associated with leakage current. A factor that affects the stability of bidirectional transistors is the potential barrier to the Schottky contact. It has been confirmed that Schottky contacts increase the efficiency of the element in semiconductor devices, by cutting off the leakage current, and that the recombination at the PN junction is closely related to the Schottky contacts. The bidirectional characteristics of the transistors are controlled by the space-charge limiting currents generated by the barrier potentials of the SiOC insulated film. Space-charge limiting currents caused by the tunneling phenomenon or quantum effect are new conduction mechanisms in semiconductors, and are different from the leakage current.

Design of Fuse Elements of Current Sensing Type Protection Device for Portable Secondary Battery Protection System (휴대용 이차전지 보호 시스템용 전류 감지 동작형 보호소자의 퓨즈 가용체 설계)

  • Kang, Chang-Yong;Kim, Eun-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.12
    • /
    • pp.1619-1625
    • /
    • 2018
  • Portable electronic devices secondary batteries can cause fire and explosion due to micro-current change in addition to the situation of short-circuit inrush current, safety can not be secured with a general operation limited current fuse. Therefore, in secondary battery, it is necessary for the protector to satisfy both the limit current type operation in the open-short-circuit inrush current and the current detection operation characteristic in the micro current change situation and for this operation, a fuse for the current detection type secondary battery protection circuit can be applied. The purpose of this study is to design a protection device that operates stably in the hazardous situation of small capacity secondary battery for portable electronic devices through the design of low melting fuse elements alloy of sensing type fuse and secures stability in abnormal current state. As a result of the experiment, I-T and V-T operation characteristics are satisfied in a the design of the alloy of the current sensing type self-contained low melting point fuse and the resistance of the heating resistor. It is confirmed that it can prevent accidents of short circuit over-current and micro current change of secondary battery.

Electrical Properties of CNT and Carbon Fiber Filled Hybrid Composites Based on PA66

  • Lee, Minji;Park, Se-Ho;Jhee, Kwang-Hwan;Kye, Hyoungsan;Bang, Daesuk
    • Elastomers and Composites
    • /
    • v.56 no.2
    • /
    • pp.65-71
    • /
    • 2021
  • In recent times, the demand for electronic devices has increased because of advancements in the electronics industry. Consequently, research on shielding against electromagnetic interference (EMI) from electronic devices has also progressed significantly. In particular, research on imparting electrical conductivity to plastic has seen substantial progress. In this study, the effect of hybrid fillers comprising carbon fiber (CF) and carbon nanotubes (CNTs) on the electrical properties of polyamide 66 (PA66) composites was investigated. PA66 composites were prepared using a BUSS Co-Kneader single-screw extruder. EMI shielding effectiveness (SE) increased with the increasing addition of unsized CF (UCF), sized CF (SCF), and CNTs. For the PA66/SCF/CNT hybrid filler composites, EMI SE significantly increased with the increase in SCF content. Finally, the hybrid filler comprising SCF and CNTs may have a synergistic effect on the EMI SE and surface resistivity of PA66/SCF/CNT composites.

AR Anchor System Using Mobile Based 3D GNN Detection

  • Jeong, Chi-Seo;Kim, Jun-Sik;Kim, Dong-Kyun;Kwon, Soon-Chul;Jung, Kye-Dong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.1
    • /
    • pp.54-60
    • /
    • 2021
  • AR (Augmented Reality) is a technology that provides virtual content to the real world and provides additional information to objects in real-time through 3D content. In the past, a high-performance device was required to experience AR, but it was possible to implement AR more easily by improving mobile performance and mounting various sensors such as ToF (Time-of-Flight). Also, the importance of mobile augmented reality is growing with the commercialization of high-speed wireless Internet such as 5G. Thus, this paper proposes a system that can provide AR services via GNN (Graph Neural Network) using cameras and sensors on mobile devices. ToF of mobile devices is used to capture depth maps. A 3D point cloud was created using RGB images to distinguish specific colors of objects. Point clouds created with RGB images and Depth Map perform downsampling for smooth communication between mobile and server. Point clouds sent to the server are used for 3D object detection. The detection process determines the class of objects and uses one point in the 3D bounding box as an anchor point. AR contents are provided through app and web through class and anchor of the detected object.

Gate Field Alleviation by graded gate-doping in Normally-off p-GaN/AlGaN/GaN Hetrojunction FETs (상시불통형 p-GaN/AlGaN/GaN 이종접합 트랜지스터의 게이트막 농도 계조화 효과)

  • Cho, Seong-In;Kim, Hyungtak
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.1167-1171
    • /
    • 2020
  • In this work, we proposed a graded gate-doping structure to alleviate an electric field in p-GaN gate layer in order to improve the reliability of normally-off GaN power devices. In a TCAD simulation by Silvaco Atlas, a distribution of the graded p-type doping concentration was optimized to have a threshold voltage and an output current characteristics as same as the reference device with a uniform p-type gate doping. The reduction of an maximum electric field in p-GaN gate layer was observed and it suggests that the gate reliability of p-GaN gate HFETs can be improved.

Resistive Switching Properties of N and F co-doped ZnO

  • Kim, Minjae;Kang, Kyung-Mun;Wang, Yue;Chabungbam, Akendra Singh;Kim, Dong-eun;Kim, Hyung Nam;Park, Hyung-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.2
    • /
    • pp.53-58
    • /
    • 2022
  • One of the most promising emerging technologies for the next generation of nonvolatile memory devices based on resistive switching (RS) is the resistive random-access memory mechanism. To date, RS effects have been found in many transition metal oxides. However, no clear evidence has been reported that ZnO-based resistive transition mechanisms could be associated with strong correlation effects. Here, we investigated N, F-co-doped ZnO (NFZO), which shows bipolar RS. Conducting micro spectroscopic studies on exposed surfaces helps tracking the behavioral change in systematic electronic structural changes during low and high resistance condition of the material. The significant difference in electronic conductivity was observed to attribute to the field-induced oxygen vacancy that causes the metal-insulator Mott transition on the surface. In this study, we showed the strong correlation effects that can be explored and incorporated in the field of multifunctional oxide electrons devices.