Browse > Article
http://dx.doi.org/10.4313/JKEM.2021.34.6.14

Bio-Piezoelectric Generator with Silk Fibroin Films Prepared by Dip-Coating Method  

Kim, Min-Soo (School of Nano & Materials Engineering, Kyungpook National University)
Park, Sang-Shik (School of Nano & Materials Engineering, Kyungpook National University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.34, no.6, 2021 , pp. 487-494 More about this Journal
Abstract
Piezoelectric generators use direct piezoelectric effects that convert mechanical energy into electrical energy. Many studies were attempted to fabricate piezoelectric generators using piezoelectrics such as ZnO, PZT, PVDF. However, these various inorganic/organic piezoelectric materials are not suitable for bio-implantable devices due to problems such as brittleness, toxicity, bio-incompatibility, bio-degradation. Thus, in this paper, piezoelectric generators were prepared using a silk fibroin film which is bio-compatible by dip-coating method. The silk fibroin films are a mixed state of silk I and silk II having stable β-sheet type structures and shows the d33 value of 8~10 pC/N. There was a difference in output voltages according to the thickness. The silk fibroin generators, coated 10 times and 20 times, revealed the power density of 16.07 μW/cm2 and 35.31 μW/cm2 using pushing tester, respectively. The silk fibroin generators are sensitive to various pressure levels, which may arise from body motions such as finger tapping, foot pressing, wrist shaking, etc. The silk fibroin piezoelectric generators with bio-compatibility shows the applicability as a low-power implantable piezoelectric generator, healthcare monitoring service, and biotherapy devices.
Keywords
Natural driven bio piezoelectric; Biocompatibility; Silk fibroin; Dip coating; Energy harvesting;
Citations & Related Records
연도 인용수 순위
  • Reference
1 P. Aramwit, S. Kanokpanont, T. Nakpheng, and T. Srichana, Inter. J. Mol. Sci., 11, 2200 (2010). [DOI: https://doi.org/10.3390/ijms11052200]   DOI
2 W. I. Abdel-Fattah, N. Atwa, and G. W. Ali, Prog. Biomater., 4, 77 (2015). [DOI: https://doi.org/10.1007/s40204-015-0039-x]   DOI
3 E. Fukada, Biorheology, 32, 593 (1995). [DOI: https://doi.org/10.1016/0006-355X(95)00039-C]   DOI
4 S. Rajala, T. Siponkoski, E. Sarlin, M. Mettanen, M. Vuoriluoto, A. Pammo, J. Juuti, O. J. Rojas, S. Franssila, and S. Tuukkanen, ACS Appl. Mater. Interfaces, 8, 15607 (2016). [DOI: https://doi.org/10.1021/acsami.6b03597]   DOI
5 S. K. Karan, S. Maiti, O. Kwon, S. Paria, A. Maitra, S. K. Si, Y. Kim, J. K. Kim, and B. B. Khatua, Nano Energy, 49, 655 (2018). [DOI: https://doi.org/10.1016/j.nanoen.2018.05.014]   DOI
6 C. Lagomarsini, C. Jean-Mistral, G. Lombardi, and A. Sylvestre, Smart Mater. Struct., 28, 035003 (2019). [DOI: https://doi.org/10.1088/1361-665x/aaf34e]   DOI
7 Y. Guo, X. S. Zhang, Y. Wang, W. Gong, Q. Zhang, H. Wang, and J. Brugger, Nano Energy, 48, 152 (2018). [DOI: https://doi.org/10.1016/j.nanoen.2018.03.033]   DOI
8 V. Sencadas, C. Garvey, S. Mudie, J.J.K. Kirkensgaard, G. Gouadec, and S. Hauser, Nano Energy, 66, 104106 (2019). [DOI: https://doi.org/10.1016/j.nanoen.2019.104106]   DOI
9 T. Li, M. Qu, C. Carlos, L. Gu, F. Jin, T. Yuan, X. Wu, J. Xiao, T. Wang, W. Dong, X. Wang, and Z. Q. Feng, Adv. Mater., 33, 2006093 (2021). [DOI: https://doi.org/10.1002/adma.202006093]   DOI
10 C. Thevenot, D. Rouxel, S. Sukumaran, S. Rouabah, B. Vincent, S. Chatbouri, and T. B. Zineb, J. Appl. Polym. Sci., 138, 50420 (2021). [DOI: https://doi.org/10.1002/app.50420]   DOI
11 H. Gullapalli, V.S.M. Vemuru, A. Kumar, A. Botello-Mendez, R. Vajtai, M. Terrones, S. Nagarajaiah, and P. M. Ajayan, Small, 6, 1641 (2010). [DOI: https://doi.org/10.1002/smll.201000254]   DOI
12 M. Y. Choi, D. Choi, M. J. Jin, I. Kim, S. H. Kim, J. Y. Choi, S. Y. Lee, J. M. Kim, and S. W. Kim, Adv. Mater., 21, 2185 (2009). [DOI: https://doi.org/10.1002/adma.200803605]   DOI
13 L. Csoka, I. C. Hoeger, O. J. Rojas, I. Peszlen, J. J. Pawlak, and P. N. Peralta, ACS Macro Lett., 1, 867 (2012). [DOI: https://doi.org/10.1021/mz300234a]   DOI
14 C. Vepari and D. L. Kaplan, Prog. Polym. Sci., 32, 991 (2007), [DOI: https://doi.org/10.1016/j.progpolymsci.2007.05.013]   DOI
15 K. I. Park, J. H. Son, G. T. Hwang, C. K. Jeong, J. Ryu, M. Koo, I. Choi, S. H. Lee, M. Byun, Z. L. Wang, and K. J. Lee, Adv. Mater., 26, 2514 (2014). [DOI: https://doi.org/10.1002/adma.201305659]   DOI
16 M. Akerfeldt, A. Lund, and P. Walkenstrom, Text. Res. J., 85, 1789 (2015). [DOI: https://doi.org/10.1177/0040517515578333]   DOI
17 D. Denning, J. I. Kilpatrick, E. Fukada, N. Zhang, S. Habelitz, A. Fertala, M. D. Gilchrist, Y. Zhang, S.A.M. Tofail, and B. J. Rodriguez, ACS Biomater. Sci. Eng., 3, 929 (2017). [DOI: https://doi.org/10.1021/acsbiomaterials.7b00183]   DOI
18 B. Y. Lee, J. Zhang, C. Zueger, W. J. Chung, S. Y. Yoo, E. Wang, J. Meyer, R. Ramesh, and S. W. Lee, Nat. Nanotechnol., 7, 351 (2012). [DOI: https://doi.org/10.1038/nnano.2012.69]   DOI
19 S. K. Karan, S. Maiti, S. Paria, A. Maitra, S. K. Si, J. K. Kim, and B. B. Khatua, Mater. Today Energy, 9, 114 (2018). [DOI: https://doi.org/10.1016/j.mtener.2018.05.006]   DOI
20 Y. Qi, H. Wang, K. Wei, Y. Yang, R. Y. Zheng, I. S. Kim, and K. Q. Zhang, Int. J. Mol. Sci., 18, 237 (2017). [DOI: https://doi.org/10.3390/ijms18030237]   DOI
21 H. J. Kim, J. H. Kim, K. W. Jun, J. H. Kim, W. C. Seung, O. H. Kwon, J. Y. Park, S. W. Kim, and I. K. Oh, Adv. Energy Mater., 6, 1502329 (2016). [DOI: https://doi.org/10.1002/aenm.201502329]   DOI
22 P. Monti, P. Taddei, G. Freddi, T. Asakura, and M. Tsukada, J. Raman Spectrosc., 32, 103 (2001). [DOI: https://doi.org/10.1002/jrs.675]   DOI
23 X. S. Zhang, J. Brugger, and B. Kim, Nano Energy, 20, 37 (2016). [DOI: https://doi.org/10.1016/j.nanoen.2015.11.036]   DOI
24 J. Joseph, S. G. Singh, and S.R.K. Vanjari, IEEE Electron Device Lett., 39, 749 (2018). [DOI: https://doi.org/10.1109/LED.2018.2816646]   DOI
25 H. Y. Wang and Y. Q. Zhang, Soft Matter, 9, 138 (2013). [DOI: https://doi.org/10.1039/c2sm26945g]   DOI
26 E. Praveen, S. Murugan, and K. Jayakumar, RSC Adv., 7, 35490 (2017). [DOI: https://doi.org/10.1039/c7ra04752e]   DOI
27 S. K. Ghosh and D. Mandal, Nano Energy, 28, 356 (2016). [DOI: https://doi.org/10.1016/j.nanoen.2016.08.030]   DOI
28 L. Jin, S. Ma, W. Deng, C. Yan, T. Yang, X. Chu, G. Tian, D. Xiong, J. Lu, and W. Yang, Nano Energy, 50, 632 (2018). [DOI: https://doi.org/10.1016/j.nanoen.2018.05.068]   DOI
29 T. Yucel, P. Cebe, and D. L. Kaplan, Adv. Funct. Mater., 21, 779 (2011). [DOI: https://doi.org/10.1002/adfm.201002077]   DOI