• Title/Summary/Keyword: Electromagnetic bias

Search Result 168, Processing Time 0.022 seconds

Design and Fabrication of the One-Chip MMIC Mixer using a Newly Proposed Bias Circuit for L-band (새로운 바이어스 회로를 적용한 L-band용 One-Chip MMIC 믹서의 설계 및 제작)

  • 신상문;권태운;신윤권;강중순;최재하
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.6
    • /
    • pp.514-520
    • /
    • 2002
  • In this paper, the study of a design and fabrication of the receiver MMIC mixer for L-band application is described. The mixer is composed of active LO and RF balun to integrate on a chip and applied a newly proposed bias circuit to compensate the process variations of active devices. The conversion gain of the mixer is -14 dB, IIP3 is approximately 4 dBm and port-to-port isolation is over 25 dB. The newly proposed bias circuit is composed of a few FETs and resistors, and can compensate the variation of the threshold voltage by the process variations, temperature changes and etc. The designed chip size is $1.4\;mm{\times}1.4\;mm$.

Efficiency Improvement of Power Amplifier Using a Digitally-Controlled Dynamic Bias Switching for LTE Base Station (Digitally-Controlled Dynamic Bias Switching을 이용한 LTE 기지국용 전력증폭기의 효율 개선)

  • Seo, Mincheol;Lee, Sung Jun;Park, Bonghyuk;Yang, Youngoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.8
    • /
    • pp.795-801
    • /
    • 2014
  • This paper presents an efficiency enhancement for the high power amplifier using DDBS(Digitally-controlled Dynamic Bias Switching) method which dynamically provides the power amplifier with two bias voltage levels according to the input envelope signal. It is quite easy to adjust the control signal by using a digital processing. The fabricated DDBS PA was evaluated using an 64 QAM FDD LTE signal, which has a center frequency of 2.6 GHz, a bandwidth of 10 MHz and a PAPR of 9.5 dB. The DDBS increases the power amplifier's PAE(Power-Added Efficiency) from 40.9 % to 48 %, at an average output power level of 43 dBm.

Efficiency Enhancement for the 3.5 GHz Balanced Power Amplifier Using Dynamic Bias Switching (Dynamic Bias Switching을 이용한 3.5 GHz Balanced Power Amplifier의 효율 개선)

  • Seo, Min-Cheol;Kim, Kyung-Won;Kim, Min-Su;Kim, Hyung-Chul;Jeon, Jeong-Bae;Yang, Youn-Goo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.8
    • /
    • pp.851-856
    • /
    • 2010
  • This paper presents an efficiency enhancement for the balanced power amplifier using DBS(Dynamic Bias Switching) method which dynamically provides the power amplifier with two bias voltage levels according to the input envelope signal. In order to apply the dynamic biases to each side of the balanced power amplifier, two switching stages are adopted. Using an OFDM signal with a bandwidth of 20 MHz and a PAR(Peak to Average Ratio) of 8.5 dB, 6 % of PAE(Power-Added Efficiency) is improved at an output power of 42.5 dBm.

Linearization of Class AB Amplifier Using Envelope Detection Bias Control (Envelope Detection 바이어스 제어를 이용한 AB급 증폭기 선형화)

  • Yi Hui-Min;Kang Sang-Gee;Hong Sung-Yong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.2 s.105
    • /
    • pp.129-133
    • /
    • 2006
  • In spite of the advantage of simple circuit, small size, and low price, predistortered power amplifier does not satisfy the IMD specification at low power range because of an IMD hump characteristic. To reduce the performance degradation by IMD hump, the method which is to control the operating point of amplifier according to its output power is presented. This method using envelope detection bias control is applied to the implemented class AB predistortered 16 W power amplifier. The measured result shows 10 dB improvement of $3^{rd}$ IMD performance in wide dynamic range of output power.

Permanent Magnet Biased Linear Magnetic Bearing for High-Precision Maglev Stage (초정밀 자기부상 스테이지의 위치제어를 위한 영구자석형 선형 자기베어링의 개발)

  • Lee, Sang-Ho;Chang, Jee-Uk;Kim, Oui-Serg;Han, Dong-Chul
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.164-169
    • /
    • 2001
  • The active magnetic bearing has many advantages - an active positioning, no contact and lubrication free motion - and is widely used in high precision motion stages. But, the conventional magnetic bearings composed of electromagnets only are power consuming due to their bias current and have the excessive heat generation, which can make the repeatability of the positioning system worse. To overcome this drawback, we developed a novel permanent magnet (PM) biased linear magnetic bearing for a high precision magnetically levitated stage. The permanent magnets provide a bias flux and generate a bias force, and the electromagnet increases or reduces a flux of the permanent magnets and gives a levitation force. This paper presents a theoretical magnetic circuit analysis, FEM analysis and experimental data from the 1-DOF tests, and compares the theoretical power consumption of the electromagnetic bearings and the PM biased linear magnetic bearings. The PM biased linear magnetic bearing presented in this paper gives better load capacity but lower power consumption than a conventional electromagnetic bearing and will be adopted in our 6-DOF high precision linear positioning maglev stage.

  • PDF

Design and Fabrication of Distributed Analog Phase Shifter Using Ferroelectric (Ba,Sr)TiO$_3$ Thin Films (강유전체 (Ba,Sr)TiO$_3$ 박막을 이용한 분포 정수형 아날로그 위상변위기 설계 및 제작)

  • 류한철;김영태;문승언;곽민환;이수재
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2002.11a
    • /
    • pp.370-374
    • /
    • 2002
  • This paper describes the design and fabrication of distributed analog phase shifter circuit. The phase shifter consist of coplanar waveguide(CPW) lines that are periodically loaded with voltage tunable (Ba,Sr)TiO$_3$ thin film interdigital(IDT) capacitors deposited by the pulsed laser deposition(PLD) on (001) MgO single crystals. The phase velocity on these IDT loaded CPW lines is a function of applied bias voltage, thus resulting in analog phase shifting circuits. The measured differential phase shift is 48$^{\circ}$ and the insertion loss decreases from -5㏈ to -3㏈ with increasing bias voltage from 0 to 40 V at 100㎐.

  • PDF

The Implementation of Power LNA Using GaAs p-HEMT (GaAs p-HEMT를 이용한 Power LNA의 설계)

  • Cho, Sam-Uel;Kim, Sang-Woo;Park, Dong-Jin;Kim, Young;Kim, Bok-Ki
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2002.11a
    • /
    • pp.29-33
    • /
    • 2002
  • 본 논문은 자기 바이어스(self bias)를 이용한 PCS 대역용 하이브리드 전력 저잡음 증폭기(power LNA) 모듈에 관한 것으로 GaAs p-HEMT 칩을 세라믹 기판에 실장하여 와이어 본딩과 주변 매칭을 통해 고주파 손실을 줄이고 온도 변화에 대한 안정성과 1.2㏈의 저잡음, 21~23㏈m의 P$_1$㏈를 실현하였다. 10mm$\times$10mm 크기로 표면 실장이 되도록 단자를 cut-line 형태로 모듈화 하여 안정성과 신뢰성을 향상시켰고 또한 저가격화를 실현하였다.

  • PDF

Finite Element Analysis of Electromagnetic Field Equation with Speed E.M.E (속도기전력을 갖는 전자력 방정식의 유한요소 해석)

  • Hahn, Song-Yop
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.4
    • /
    • pp.252-258
    • /
    • 1987
  • Time periodic finite element solutions for sinusoidally excited electromagnetic field problems in moving media are presented. Solutions by the Galerkin method contain spurious oscillations when grid Peclet number is more than one. To suppress these oscillations an upwind finite element method using two different time periodic test functions is introduced. One is multiplied to second and first-order space derivative terma and the other to the time derivative term. Test functions are obtained from trial functions by adding or subtracting quadratic bias functions with appropriate scaling factors. Phase differences are considered between trial functions and bias functions. For simple interpretations of the phase differences, complex scaling factors are used. The proposed method is developed to give nodally exact solutions for uniform grid spacing in one dimensional problems. Based on the one dimensional results, a two dimensional upwinding scheme is also derived.

  • PDF

Design of a Rceiver MMIC for the CDMA Terminal (CDMA 단말기용 수신단 MMIC 설계)

  • 권태운;최재하
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.1
    • /
    • pp.65-70
    • /
    • 2001
  • This paper presents a Receiver MMIC for the CDMA terminal. The complete circuit is composed of Low Noise Amplifier, Down Conversion Mixer, Intermediate Frequency Amplifier and Bias circuit. The Bias circuit implementation, which allows for compensation for threshold voltage and power supply voltage variation are provided. The proposed topology has high linearity and low noise characteristics. Results of the designed circuit are as follows: Overall conversion gain is 28.5 dB, input IP3 of LNA is 8 dBm, input IP3 of down conversion mixer is 0 dBm and total DC current consumption is 22.1 mA.

  • PDF

Design of a Microwave Bias-Tee Using Lumped Elements with a Wideband Characteristic for a High Power Amplifier (광대역 특성을 갖는 집중 소자를 이용한 고출력 증폭기용 마이크로파 바이어스-티의 설계)

  • Oh, Hyun-Seok;Jeong, Hae-Chang;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.7
    • /
    • pp.683-693
    • /
    • 2011
  • In this paper, a design of high current and broad-band microwave bias-tee was presented for a stable bias of a high power amplifier. An input impedance of bias-tee should be shown to 50 ohm with the wideband in order to be stably-biased the amplifier. For this design of the bias-tee, a capacitor of bias-tee for a DC block was designed with a high wide-band admittance by a parallel sum of capacitors, and a inductor for a RF choke and a DC feeding was designed with a high wide-band impedance by a series sum of inductors. As this inductor and capacitor for the sum has each SRF, band-limitation of lumped element was driven from SRF. This limitation was overcome by control of a resonance's quality factor with adding a resistor. 1608 SMD chips for design's element was mounted on the this pattern for the designed bias-tee. The fabricated bias-tee presented 10 dB of return loss and wide-band about 50 ohm input impedance at 10 MHz~10 GHz.