Finite Element Analysis of Electromagnetic Field Equation with Speed E.M.E

속도기전력을 갖는 전자력 방정식의 유한요소 해석

  • Published : 1987.04.01

Abstract

Time periodic finite element solutions for sinusoidally excited electromagnetic field problems in moving media are presented. Solutions by the Galerkin method contain spurious oscillations when grid Peclet number is more than one. To suppress these oscillations an upwind finite element method using two different time periodic test functions is introduced. One is multiplied to second and first-order space derivative terma and the other to the time derivative term. Test functions are obtained from trial functions by adding or subtracting quadratic bias functions with appropriate scaling factors. Phase differences are considered between trial functions and bias functions. For simple interpretations of the phase differences, complex scaling factors are used. The proposed method is developed to give nodally exact solutions for uniform grid spacing in one dimensional problems. Based on the one dimensional results, a two dimensional upwinding scheme is also derived.

Keywords