• Title/Summary/Keyword: Electrode potential

Search Result 1,272, Processing Time 0.281 seconds

The Comparison and Analysis about Earth Resistance for Measuring of Earth Resistance by Measurement Positions of Auxiliary Poles (접지저항 측정을 위한 보조전극 위치에 따른 접지저항 비교 분석)

  • Han, Woon-Ki;Jung, Jin-Soo;Kim, Jae-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.10
    • /
    • pp.128-133
    • /
    • 2009
  • This paper describes the comparison and analysis about measurement method of earthing resistance by positions of potential pole and current pole. In KOREA, a diagonal by 6.5 times of earthing electrode for measurement of earthing resistances but this method was almost impossible in the downtown area. For solving this problem, in this paper measuring of earthing resistance changing parameters. The parameter was a distances of earthing electrode, potential pole & current pole and the another parameter was an angles of potential pole & current pole. Analysis result, earthing resistance stability that conditions. Fist, distance from earthing electrode to current pole was over 50[m] and distance from earthing electrode to potential pole was over 30[m]. Second, angles of potential pole & current pole was over $45[^{\circ}]$.

Effects of the Position of Potential Probe on Ground Resistance Measurements Using the Fall-of-Potential Method (전위강하법에 의한 접지저항측정에 미치는 전위보조전극 위치의 영향)

  • 이복희;어주홍;김성원
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.15 no.2
    • /
    • pp.97-104
    • /
    • 2001
  • The effects of the position of potential probe on the measurements of the ground resistance in the fa11-of-potential method are described. The ground resistance is theoretically calculated by applying the 61.8[%] rule, and then the potential probe is located on the straight line between the grounding electrode to be measured and the current probe. However, sometimes the grounding electrode to be measured and the measuring potential and current probes in on-site test might not be arranged on the straight line with adequate distance because there are building, roadblock construction and other establishments. Provided that the grounding electrode to be measured and the measuring potential probes are out of position on the straight line, the measurement of the ground resistance classically falls into an error and the measured ground resistance should be corrected. In this work, measurements were focused on the grounding electrode system made by the ground rods of 2.4 m long. The measuring error was increased with increasing the angle which is made by the 3-points of the grounding electrode to be measured, the potential anti current probes, and it was a negative. That is, all of the measured ground resistances ware less than the true ground resistance.

  • PDF

Carbon-free Polymer Air Electrode based on Highly Conductive PEDOT Micro-Particles for Li-O2 Batteries

  • Yoon, Seon Hye;Kim, Jin Young;Park, Yong Joon
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.220-228
    • /
    • 2018
  • This study introduced a carbon-free electrode for $Li-O_2$ cells with the aim of suppressing the side reactions activated by carbon material. Micro-particles of poly(3,4-ethylenedioxythiophene) (PEDOT), a conducting polymer, were used as the base material for the air electrode of $Li-O_2$cells. The PEDOT micro-particles were treated with $H_2SO_4$ to improve their electronic conductivity, and LiBr and CsBr were used as the redox mediators to facilitate the dissociation of there action products in the electrode and reduce the over-potential of the $Li-O_2$ cells. The capacity of the electrode employing PEDOT micro-particles was significantly enhanced via $H_2SO_4$ treatment, which is attributed to the increased electronic conductivity. The considerable capacity enhancement and relatively low over-potential of the electrode employing $H_2SO_4$-treated PEDOT micro-particles indicate that the treated PEDOT micro-particles can act as reaction sites and provide storage space for the reaction products. The cyclic performance of the electrode employing $H_2SO_4$-treated PEDOT micro-particles was superior to that of a carbon electrode. The results of the Fourier-transform infrared spectroscopic analysis showed that the accumulation of residual reaction products during cycling was significantly reduced by introducing the carbon-free electrode based on $H_2SO_4$-treated PEDOT micro-particles, compared with that of the carbon electrode. The cycle life was improved owing to the effect of the redox mediators. The refore, the use of the carbon -free electrode combined with redox mediators could realize excellent cyclic performance and low over-potential simultaneously.

Charge Injection by Needle Electrode and Reduction Properties of Streaming Electrification (침 전극을 이용한 전하 주입과 유동대전 감소 특성)

  • Kim, Yong-Woon;Lee, Duck-Chool;Kang, Chang-Won
    • Proceedings of the KIEE Conference
    • /
    • 2000.07e
    • /
    • pp.108-112
    • /
    • 2000
  • The electric charge generated by flowing insulation liquid can create hazardous spark in transfer line and receiving tank etc. These electrification has generally been measured by current measurement with a ammeter connected to the receiving tank. This paper reports on the experimental result obtained by this method. As a experimental results: The injected charge value for unit volume increased in the following condition, the edge of the needle electrode was sharp, the number of needle electrode was fewer, the edge of the needle electrode was located close to the inside wall. When the charge density in the charge reducer is constant, electrode current and electrode potential by the charge injection from outside increase with increasing of oil velocity and streaming current. The electrode potential in charge reducer is made maximum value at edge point of reducer inside and minimum value at center line of charge reducer.

  • PDF

Study of the Application of Gel Electrolyte in the Reference Electrode of $Cu/CuSO_4$

  • Lin, Cunguo;Xu, Likun;Liu, Yang
    • Corrosion Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.179-181
    • /
    • 2008
  • With nano-$SiO_2$ and sulphate acid, a kind of colloid electrolyte is synthesized by sol-gel method. It is placed outside the reference electrode as a layer of gel electrolyte so as to decrease the leaching of $Cu^{2+}$ and increase the life of the reference electrode. The performance of the gel electrode in simulating soil solution is measured as follows: the potential of the electrodes ranging from 60 mV to 80 mV (vs. SCE) with potential variation no more than $\pm10mV$, enough resistance to polarization. The $Cu^{2+}$ effusion rate of the reference electrode without gel electrolyte is 3 times that with colloid electrolyte, which means that gel electrolyte can extend the life of the reference electrode significantly.

Electro-oxidation of Cyclohexanol on a Copper Electrode Modified by Copper-dimethylglyoxime Complex Formed by Electrochemical Synthesis

  • Hasanzadeh, Mohammad.;Shadjou, Nasrin.;Saghatforoush, Lotfali.;Khalilzadeh, Balal.;Kazeman, Isa.
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.12
    • /
    • pp.2943-2948
    • /
    • 2009
  • Copper-dimethylglyoxime complex (CuDMG) modified Copper electrode (Cu/CuDMG) showed a catalytic activity towards cyclohexanol oxidation in NaOH solution. The modified electrode prepared by the dimethylglyoxime anodic deposition on Cu electrode in the solution contained 0.20 M $NH_4Cl\;+\;NH_4OH\;(pH\;9.50)\;and\;1\;{\times}\;10^{-4}$ M dimethylglyoxime. The modified electrode conditioned by potential recycling in a potential range of -900${\sim}$900 mV vs. Ag/AgCl by cyclic voltammetry in alkaline medium (1 M NaOH). The results show that the CuDMG film on the electrode behaves as an efficient catalyst for the electro-oxidation of cyclohexanol in alkaline medium via Cu (III) species formed on the electrode.

The Analysis of Ground Potential Rise for Shapes of Grounding Electrode Using Hemispherical Grounding Simulation System (반구형 접지모의시스템을 이용한 접지전극의 형상에 따른 대지전위상승의 분석)

  • Gil Hyoung-Jun;Choi Chung-Seog;Lee Bok-Hee
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.7
    • /
    • pp.319-325
    • /
    • 2005
  • In order to analyze ground potential rise of grounding system installed in buildings, the hemispherical grounding simulation system has been designed and fabricated as substantial and economical measures. Ground potential rise(GPR) has been measured and analyzed for shapes of grounding electrode using the system in real time. The system is apparatus to have a free reduced scale for conductor size and laying depth of a full scale grounding system and is constructed so that a shape of equipotential surface is nearly identified a free reduced scale with a real scale when a current flows through grounding electrode. The system was composed of a hemispherical water tank, AC Power supply, a movable potentiometer, and test grounding electrodes. The test grounding electrodes were fabricated through reducing grounding electrode installed in real buildings such as rod type, mesh grid type. When a mesh grid type was associated with a rod type, GPR was the lowest value. The proposed results would be applicable to evaluate GPR in the grounding systems. and the analytical data can be used 0 stabilize the electrical installations and prevent the electrical disasters.

Study on the Charging Characteristics of a Sealed Type Ni-Cd Cell (밀폐식 Ni-Cd 전지의 충전특성에 관한 연구)

  • Yung Woo Park;Chai Won Kim;Mu Shik Jhon
    • Journal of the Korean Chemical Society
    • /
    • v.15 no.6
    • /
    • pp.347-352
    • /
    • 1971
  • The variations of the positive and negative electrode potentials, and of internal pressure were measured during the charge of the sealed type Ni-Cd cell. Both polarization characteristics of a paste type Cd-electrode as a gas diffusion electrode in 30% KOH solution and the effects of active carbon electrode as an oxygen consuming auxiliary electrode of the Ni-Cd cell on the charging characteristics of the cell were studied. Peak voltage at the end of charge of the cell is ascribed to the peak at the negative electrode potential, which is due to the concentration polarization by the lack of $Cd^{++}$ ion and oxygen concentration. And the recovery of the negative electrode potential is resulted from depolarization by the increasing diffusion limiting current density with the increasing oxygen pressure. The active carbon electrode was effective as an oxygen consuming auxiliary electrode. The internal pressure of the cell could be maintained below 200mmHg even at one hour rate charge and overcharge by the use of active carbon electrode as an auxiliary electrode.

  • PDF

A study on the Potential Detection System of Gas Insulated Switchgear (가스절연개폐장치의 전위감지 시스템에 대한 연구)

  • Choi, Seung-Kil;Baek, Seung-Kook;Kim, Kwang-Ho;Kang, Hyung-Boo
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2284-2286
    • /
    • 1999
  • This paper describes the development of potential detection system in 22.9kV gas insulated switchgear. This system composed with main system and LPS can detect the source voltage by capacitive potential division which is accomplished by inserting signal electrode between main electrode and earthed metal enclosure of the switchgear. The appropriate position of signal electrode is achieved by numerical analysis using finite element method. The developed potential detection system is verified by several tests such as voltage test, swc test and others and by applicaion at site. From the results, it is concluded that potential detection system is very reliable and available to operate the switchgear safely.

  • PDF

Characterization of Water-Filled Ag/AgCl Reference Electrode

  • Bahn Chi Bum;Oh Sihyoung;Hwang Il Soon;Chung Hahn Sup;Jegarl Sung
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.3
    • /
    • pp.87-93
    • /
    • 2001
  • Pressure-balanced external Ag/AgCl electrode has been extensively used for both Pressurized Water Reactor (PWR) and Boiling Water Reactor (PWR) environments. The use of KCI-based buffer solution often becomes the source of electrode potential drift due to slow leakage through its porous plug, typically made of zirconia. It is reported that results of our effort to improve the stability of electrode potential by using high purity water as the filling solution in which $Cl^-$ ion activity can be established and maintained at the solubility of AgCl even with the sustained leakage for a long period. Stability tests have been made in boron and lithium mixture solution at $288^{\circ}C$. The electrode potential remained stable within 10 mV over one week period. And after a thermal cycle between 288 to $240^{\circ}C$ the potential shift of Ag/AgCl electrodes did not exceed 15 mV By using the limiting equivalent ionic conductances and Agar's hydrodynamic theory, the thermal liquid junction potential (TLJP) of the electrode has been predicted. The calculated values for the water-fiued Ag/AgCl electrode potential, in which the chlorine concentration in the filling solution was derived from the measured data at ambient temperature, had a good agreement with the experimental values.