Browse > Article
http://dx.doi.org/10.5229/JECST.2018.9.3.220

Carbon-free Polymer Air Electrode based on Highly Conductive PEDOT Micro-Particles for Li-O2 Batteries  

Yoon, Seon Hye (Department of Advanced Materials Engineering, Kyonggi University)
Kim, Jin Young (Department of Advanced Materials Engineering, Kyonggi University)
Park, Yong Joon (Department of Advanced Materials Engineering, Kyonggi University)
Publication Information
Journal of Electrochemical Science and Technology / v.9, no.3, 2018 , pp. 220-228 More about this Journal
Abstract
This study introduced a carbon-free electrode for $Li-O_2$ cells with the aim of suppressing the side reactions activated by carbon material. Micro-particles of poly(3,4-ethylenedioxythiophene) (PEDOT), a conducting polymer, were used as the base material for the air electrode of $Li-O_2$cells. The PEDOT micro-particles were treated with $H_2SO_4$ to improve their electronic conductivity, and LiBr and CsBr were used as the redox mediators to facilitate the dissociation of there action products in the electrode and reduce the over-potential of the $Li-O_2$ cells. The capacity of the electrode employing PEDOT micro-particles was significantly enhanced via $H_2SO_4$ treatment, which is attributed to the increased electronic conductivity. The considerable capacity enhancement and relatively low over-potential of the electrode employing $H_2SO_4$-treated PEDOT micro-particles indicate that the treated PEDOT micro-particles can act as reaction sites and provide storage space for the reaction products. The cyclic performance of the electrode employing $H_2SO_4$-treated PEDOT micro-particles was superior to that of a carbon electrode. The results of the Fourier-transform infrared spectroscopic analysis showed that the accumulation of residual reaction products during cycling was significantly reduced by introducing the carbon-free electrode based on $H_2SO_4$-treated PEDOT micro-particles, compared with that of the carbon electrode. The cycle life was improved owing to the effect of the redox mediators. The refore, the use of the carbon -free electrode combined with redox mediators could realize excellent cyclic performance and low over-potential simultaneously.
Keywords
Lithium oxygen battery; Electrode; PEDOT; Micro-particle;
Citations & Related Records
연도 인용수 순위
  • Reference
1 F. Li, T. Zhang and H. Zhou, Energy Environ. Sci., 2013, 6(4), 1125-1141.   DOI
2 P.G. Bruce, S.A. Freunberger, L.J. Hardwick and J.M. Tarascon, Nat. Mater., 2012, 11(1), 19-29.   DOI
3 B.M. Gallant, D.G. Kwabi, R.R. Mitchell, J. Zhou, C.V. Thompson and Y. Shao-Horn, Energy Environ. Sci., 2013, 6(8), 2518-2528.   DOI
4 C.S. Park, K.S. Kim and Y.J. Park, J. Power Sources, 2013, 244, 72-79.   DOI
5 K.R. Yoon, D.S. Kim, W.H. Ryu, S.H. Song, D.Y. Youn, J.W. Jung, S. Jeon, Y.J. Park and I.D. Kim, Chemsuschem., 2016, 9(16), 2080-2088.   DOI
6 J. Lu, Y.J. Lee, et al, Nature, 2016, 529(7586), 377-382.   DOI
7 Z.W. Chang, J.J. Xu, Q.C. Liu, L. Li and X.B. Zhang, Adv. Energy Mater., 2015, 5(21), 1500633.   DOI
8 D.S. Kim and Y.J. Park, Electrochim. Acta, 2014, 132, 297-306.   DOI
9 A. Debart, A.J. Paterson, J. Bao and P.G. Bruce, Angew. Chem., 2008, 120, 4597-4600.   DOI
10 W.J. Kwak, D. Hirshberg, D. Sharon, M. Afri, A.A. Frimer, H.G. Jung, D. Aurbach and Y.K. Sun, Energy Environ. Sci., 2016, 9(7), 2334-2345.   DOI
11 T. Liu, M. Leskes, W. Yu, A.J. Moore, L. Zhou, P.M. Bayley, G. Kim and C.P. Grey, Science, 2015, 350(6260), 530-533.   DOI
12 C.K. Lee and Y.J. Park, ACS Appl. Mater. Interfaces, 2016, 8(13), 8561-8567.   DOI
13 S.H. Yoon and Y.J. Park, Sci. Rep., 2017, 7, 42617.   DOI
14 X. Gao, Y. Chen, L. Johnson and P.G. Bruce, Nat. Mater., 2016, 15(8), 882-888.   DOI
15 H.D. Lim, K.Y. Park, H. Song, E.Y. Jang, H. Gwon, J. Kim, Y.H. Kim, M.D. Lima, R.O. Robles, X. Lepro, R.H. Baughman and K. Kang, Adv. Mater., 2013, 25(9), 1348-1352.   DOI
16 T.H. Yoon and Y.J. Park, RSC Adv., 2014, 4(34), 17434-17442.   DOI
17 Y.C. Lu and Y. Shao-Horn, J. Phys. Chem. Lett., 2012, 4(1), 93-99.   DOI
18 D.S. Kim and Y.J. Park, J. Alloy. Compd., 2014, 591, 164-169.   DOI
19 R. Padbury and X. Zhang, J. Power Sources, 2011, 196(10), 4436-4444.   DOI
20 G. Girishkumar, B. McCloskey, A.C. Luntz, S. Swanson and W. Wilcke, J. Phys. Chem. Lett., 2010, 1(14), 2193-2203.   DOI
21 M.M. Ottakam Thotiyl, S.A. freunberger, Z. Peng and P.G. Bruce, J. Am. Chem. Soc., 2012, 135, 494-500.
22 B. D. McCloskey, A. Speidel, R. Scheffler, D. C. Miller, V. Viswanathan, J. S. Hummelshoj, J. K. Norskov and A. C. Luntz, J. Phys. Chem. Lett., 2012, 3(8), 997-1001.   DOI
23 C.K. Lee, Y.J. Park, Chem. Commun., 2015, 51(7), 1210-1213.   DOI
24 C.K. Lee and Y.J. Park, Nanoscale Res. Lett., 2015, 10(1), 319.   DOI
25 D.H. Yoon, S.H. Yoon, K.S. Ryu and Y.J. Park, Sci. Rep., 2016, 6, 19962.   DOI
26 J.Y. Kim and Y.J. Park, Sci. Rep., 2017, 7, 8610.   DOI
27 S.H. Yoon and Y.J. Park, RSC Adv., 2017, 7(89), 56752-56759.   DOI
28 N.R. Kim, S.Y. Kee, S.H. Lee, B. H. Lee, Y.H. Kahng, Y.-R. Jo, B.-J. Kim and K.H. Lee, Adv. Mater., 2014, 26(14), 2268-2272.   DOI
29 M.M. Ottakam Thotiyl, S.A. Freunberger, Z. Peng, Y. Chen, Z. Liu and P.G. Bruce, Nature Mater., 2013, 12(11), 1050-1056.   DOI
30 A. Riaz, K.N. Jung, W. Chang, S.B. Lee, T.H. Lim, S.J. Park, R.H. Song, S. Yoon, K.H. Shin and J.W. Lee, Chem. Commun., 2013, 49(53), 5984-5986.   DOI
31 Y. Cui, Z. Wen and Y. Liu, Energy Environ. Sci., 2011, 4(11), 4727-4734.   DOI
32 H.D. Lim, B. Lee, Y. Zheng, J. Hong, J. Kim, H. Gwon, Y. Ko, M. Lee, K. Cho and K. Kang, Nat. Energy, 2016, 1(6), 16066.   DOI
33 M.S. Whittingham, Chem. Rev., 2004, 104(10), 4271-4302.   DOI
34 J.B. Goodenough and K.S. Park, J. Am. Chem. Soc., 2013, 135(4) 1167-1176.   DOI
35 M.H. Pyun and Y.J. Park, J. Alloy. Compd., 2015, 643, S90-S94.   DOI
36 B. Scrosati and J. Garche, J. Power Sources, 2010, 195(9), 2419-2430.   DOI
37 H.J. Lee and Y.J. Park, J. Power Sources, 2013, 244, 222-233.   DOI
38 J.S. Lee, S.T. Kim, R. Cao, N.S. Choi, M. Liu, K.T. Lee and J. Cho, Adv. Energy Mater., 2011, 1(1), 34-50.   DOI
39 W.H. Ryu, T.H. Yoon, S.H. Song, S. Jeon, Y.J. Park and I.D. Kim, Nano Lett., 2013, 13(9), 4190-4197.   DOI
40 T.H. Yoon and Y.J. Park, J. Power Sources, 2013, 244, 344-353.   DOI
41 P. Tan, H.R. Jiang, X.B. Zhu, L. An, C.Y. Jung, M.C. Wu, L. Shi, W. Shyy and T.S. Zhao, Appl. Energy, 2017, 204, 780-806.   DOI
42 B.D. Adams, C. Radtke, R. Black, M.L. Trudeau, K. Zaghib and L.F. Nazar, Energy Environ. Sci., 2013, 6(6), 1772-1778.   DOI
43 A.C. Luntz and B.D. McCloskey, Chem. Rev., 2014, 114(23), 11721-11750.   DOI
44 A. Kraytsberg and Y. Ein-Eli, J. Power Sources, 2011, 196(3), 886-893.   DOI
45 R. Black, B. Adams and L.F. Nazar, Adv. Energy Mater., 2012, 2(7), 801-815.   DOI
46 Z. Peng, S.A. Freunberger, Y. Chen and P.G. Bruce, Science, 2012, 337, 563-566.   DOI
47 H. Kim, H.D. Lim, J. Kim and K. Kang, J. Mater. Chem. A, 2014, 2(1), 33-47.   DOI