• Title/Summary/Keyword: Electrode fabrication

Search Result 861, Processing Time 0.034 seconds

Fabrication of the Plasma Focus Device for Advanced Lithography Light Source and Its Electro Optical Characteristics in Argon Arc Plasma (차세대 리소그래피 빛샘 발생을 위한 플라스마 집속 장치의 제작과 아르곤 아크 플라스마의 발생에 따른 회로 분석 및 전기 광학적 특성 연구)

  • Lee S.B.;Moon M.W.;Oh P.Y.;Song K.B.;Lim J.E.;Hong Y.J.;Yi W.J.;Choi E.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.4
    • /
    • pp.380-386
    • /
    • 2006
  • In this study, we had designed and fabricated the plasma focus device which can generate the light source for EUV(Extreme Ultra Violet) lithography. And we also have investigated the basic electrical characteristics of currents, voltages, resistance and inductance of this system. Voltage and current signals were measured by C-dot and B-dot probe, respectively. We applied various voltages of 1.5, 2, 2.5 and 3 kV to the anode electrode and observed voltages and current signals in accordance with various Ar pressures of 1 mTorr to 100 Torr in diode chamber. It is observed that the peak values of voltage and current signals were measured at 300 mTorr, where the inductance and impedance were also estimated to be 73 nH and $35 m{\Omega}$ respectively. The electron temperature has been shown to be 13000 K at the diode voltage of 2.5 kV and this gas pressure of 300 mTorr. It is also found that the ion density Ni and ionization rate 0 have been shown to be $N_i = 8.25{\times}10^{15}/cc$ and ${\delta}$= 77.8%, respectively by optical emission spectroscopy from assumption of local thermodynamic equilibrium(LTE) plasma.

A Study on the Optimization of the SiNx:H Film for Crystalline Silicon Sloar Cells (결정질 실리콘 태양전지용 SiNx:H 박막 특성의 최적화 연구)

  • Lee, Kyung-Dong;Kim, Young-Do;Dahiwale, Shailendra S.;Boo, Hyun-Pil;Park, Sung-Eun;Tark, Sung-Ju;Kim, Dong-Hwan
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.1
    • /
    • pp.29-35
    • /
    • 2012
  • The Hydrogenated silicon nitride (SiNx:H) using plasma enhanced chemical vapor deposition is widely used in photovoltaic industry as an antireflection coating and passivation layer. In the high temperature firing process, the $SiN_x:H$ film should not change the properties for its use as high quality surface layer in crystalline silicon solar cells. Initially PECVD-$SiN_x:H$ film trends were investigated by varying the deposition parameters (temperature, electrode gap, RF power, gas flow rate etc.) to optimize the process parameter conditions. Then by varying gas ratios ($NH_3/SiH_4$), the hydrogenated silicon nitride films were analyzed for its optical, electrical, chemical and surface passivation properties. The $SiN_x:H$ films of refractive indices 1.90~2.20 were obtained. The film deposited with the gas ratio of 3.6 (Refractive index=1.98) showed the best properties in after firing process condition. The single crystalline silicon solar cells fabricated according to optimized gas ratio (R=3.6) condition on large area substrate of size $156{\times}156mm$ (Pseudo square) was found to have the conversion efficiency as high as 17.2%. Optimized hydrogenated silicon nitride surface layer and high efficiency crystalline silicon solar cells fabrication sequence has also been explained in this study.

Fabrication of Sm0.5Sr0.5CoO3 cathode films for intermediate temperature SOFCs by electrostatic spray deposition (정전분무증착법에 의한 중온형 고체산화물 연료전지를 위한 Sm0.5Sr0.5CoO3 양극막의 제조)

  • Park, In-Yu;Im, Jong-Mo;Jung, Yeong-Geul;Shin, Dong-Wook
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.2
    • /
    • pp.69-73
    • /
    • 2010
  • The microstructural change of the $Sm_{0.5}Sr_{0.5}CoO_3$ (SSC) electrode for a cathode material of solid oxdie fuel cells (SOFCs) deposited by the electrostatic spray deposition (ESD) technique was characterized. Samarium chloride hexahydrate $(SmCl_3{\cdot}6H_2O)$, strontium chloride hexahydrate $(SrCl_2{\cdot}gH_2O)$, cobalt nitrate hexahydrate $(Co(No_3)_2{\cdot}6H_2O)$ as starting materials and methyl alcohol as solvent were used to make precursor solution. The suitable porous SSC films for a cathode of SOFCs were deposited on Si substrate and it is observed that the microstructure was strongly dependent on processing parameters such as deposition time, substrate temperature, and applied voltage. Scanning Electron Microscope (SEM) and X-ray Diffractometer (XRD) measurement were used to investigate the microstructure and crystallinity of the SSC films. The ESD technique is shown to be an efficient method in which the SOFCs' cathode film can be fabricated with the desired phases and microstructure.

Development and Testing of CdZnTe Detector for Pocket Surveymeter (CdZnTe 검출기를 이용한 개인용 Pocket Surveymeter의 제작 및 특성)

  • Lee, Hong-Kyu;Kang, Young-Il;Choi, Myung-Jin;Wang, Jin-Suk;Kim, Byung-Taik
    • Journal of Radiation Protection and Research
    • /
    • v.21 no.1
    • /
    • pp.1-7
    • /
    • 1996
  • In this paper, we discussed the fabrication and characterization of bulk type CdZnTe detector for pocket surveymeter. The resistivity of CdZnTe single crystal grown by the High Pressure Bridgman method is in the mid of $10^9$ ohm-cm. The detector structure is Au/CdZnTe/Au and gold electrode is formed by electroless deposition method. Resolutions of 4.8keV and 2.2keV were observed at 22.2keV line of $^{109}Cd$ and 59.6keV line of $^{241}Am$ at room temperature, respectively. We also constructed the small size pocket surveymeter using home made CdZnTe detector. It shows the good linearity over a range from 1mR/hr to 10R/hr with deviation less than 5%. The sensitivity of the surveymeter developed is $2.2{\times}10^3 cps/Rad\;hr^{-1}$ for the 662keV of $^{l37}Cs\;{\gamma}-ray$.

  • PDF

High Efficiency Solar Cell(I)-Fabrication and Characteristics of $N^+PP^+$ Cells (고효율 태양전지(I)-$N^+PP^+$ 전지의 제조 및 특성)

  • 강진영;안병태
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.18 no.3
    • /
    • pp.42-51
    • /
    • 1981
  • Boron was predeposited into p (100) Si wafer at 94$0^{\circ}C$ for 60minutes to make the back surface field. High tempreature diffusion process at 1145$^{\circ}C$ for 3 hours was immediately followed without removing boron glass to obtain high surface concentration Back boron was annealed at 110$0^{\circ}C$ for 40minutes after boron glass was removed. N+ layer was formed by predepositing with POCI3 source at 90$0^{\circ}C$ for 7~15 minutes and annealed at 80$0^{\circ}C$ for 60min1es under dry Of ambient. The triple metal layers were made by evaporating Ti, Pd, Ag in that order onto front and back of diffused wafer to form the front grid and back electrode respectively. Silver was electroplated on front and back to increase the metal thickness form 1~2$\mu$m to 3~4$\mu$m and the metal electrodes are alloyed in N2 /H2 ambient at 55$0^{\circ}C$ and followed by silicon nitride antireflection film deposition process. Under artificial illumination of 100mW/$\textrm{cm}^2$ fabricated N+PP+ cells showed typically the open circuit voltage of 0.59V and short circuit current of 103 mA with fill factor of 0.80 from the whole cell area of 3.36$\textrm{cm}^2$. These numbers can be used to get the actual total area(active area) conversion efficiency of 14.4%(16.2%) which has been improved from the provious N+P cell with 11% total area efficiency by adding P+ back.

  • PDF

A Comparative Study of ITO Glass Ablation Using Femtosecond and Nanosecond Lasers (펨토초 레이저와 나노초 레이저를 이용한 ITO Glass의 어블레이션 비교 연구)

  • Jeon, Jin-Woo;Shin, Young-Gwan;Kim, Hoon-Young;Choi, Wonsuk;Ji, Seok-Young;Kang, Hee-Shin;Ahn, Sanghoon;Chang, Won Seok;Cho, Sung-Hak
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.6
    • /
    • pp.356-360
    • /
    • 2017
  • Indium tin oxide (ITO) provides high electrical conductivity and transparency at visible and near-IR wavelengths. ITO is widely used as a transparent electrode for the fabrication of LCDs, OLEDs, and many kinds of optical applications. It is widely employed for electrodes in various electric and display sectors because of its transparency in the visible range and high conductivity. Therefore, one issue is removing a specific area of a layer of material such as ITO or metallic film on a substrate, without affecting the properties of the substrate. ITO-on-glass removal using a laser is friendlier to the environment than traditional methods. In this study, ablation of ITO film on glass using a femtosecond-laser micromachining system (wavelength 1026 nm, pulse duration 150 fs) and a nanosecond-laser micromachining system (wavelength 1027 nm, pulse duration 5 ns) are described, compared, and analyzed.

The Fabrication of MOS Capacitor composed of $HfO_2$/Hf Gate Dielectric prepared by Atomic Layer Deposition (ALD 방법으로 증착된 $HfO_2$/Hf 박막을 게이트 절연막으로 사용한 MOS 커패시터 제조)

  • Lee, Dae-Gab;Do, Seung-Woo;Lee, Jae-Sung;Lee, Yong-Hyun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.5
    • /
    • pp.8-14
    • /
    • 2007
  • In this paper, $HfO_2$/Hf stacked film has been applied as the gate dielectric in MOS devices. The $HfO_2$ thin film was deposited on p-type (100) silicon wafers by atomic layer deposition (ALD) using TEMAHf and $O_3$ as precursors. Prior to the deposition of the $HfO_2$ film, a thin Hf metal layer was deposited as an intermediate layer. Round-type MOS capacitors have been fabricated on Si substrates with 2000${\AA}$-thick Al or Pt top electrode. The prepared film showed the stoichiometric components. At the $HfO_2$/Si interface, both Hf-Si and Hf-Si-O bonds were observed, instead of Si-O bond. The sandwiched Hf metal layer suppressed the growing of $SiO_x$ layer so that $HfSi_xO_y$ layer was achieved. It seems that the intermediate Hf metal layer has a benefit for the enhancement of electric characteristics of gate dielectric in $HfO_2$/Si structure.

Variations in Electrical Conductivity of CNF/PPy Films with the Ratio of CNF and Application to a Bending Sensor (탄소나노섬유의 함량에 따른 CNF/PPy 필름의 전기전도도 및 굽힘센서로 응용)

  • Kim, Cheol;Zhang, Shuai;Kim, Seon-Myeong
    • Composites Research
    • /
    • v.23 no.3
    • /
    • pp.31-36
    • /
    • 2010
  • A new material, carbon-nanofiber/polypyrrole (CNF/PPy) composite films, with different CNF weight ratios were fabricated electrochemically. Compared to the fabrication process based on simple physical mixing, the flexibility of the new film has been improved much better than the previous similar material. Pure PPy films were also fabricated by the new electrochemical process for the comparison of difference. Several SEM images were taken at two locations (electrode-side and solution-side) and at the cross section of the samples. Electrical conductivity of the composite films was measured by the four-probe method. The conductivity of the pure PPy film 0.013cm thick was 79.33S/cm. The CNF/PPy composite film with 5% CNF showed a conductivity of 93S/cm. One with 10% CNF showed a conductivity of 126 S/cm. The conductivity of PPy improves, as the CNF weight ratio increases. The good conductivity of CNF/PPy composites makes them a candidate for a small bending actuator. A bending sensor consists of PPy and PVDF, which can be operated in the air, was designed and the bending deflection was calculated using FEM.

Electrical Characteristic of IGZO Oxide TFTs with 3 Layer Gate Insulator

  • Lim, Sang Chul;Koo, Jae Bon;Park, Chan Woo;Jung, Soon-Won;Na, Bock Soon;Lee, Sang Seok;Cho, Kyoung Ik;Chu, Hye Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.344-344
    • /
    • 2014
  • Transparent amorphous oxide semiconductors such as a In-Ga-Zn-O (a-IGZO) have advantages for large area electronic devices; e.g., uniform deposition at a large area, optical transparency, a smooth surface, and large electron mobility >10 cm2/Vs, which is more than an order of magnitude larger than that of hydrogen amorphous silicon (a-Si;H).1) Thin film transistors (TFTs) that employ amorphous oxide semiconductors such as ZnO, In-Ga-Zn-O, or Hf-In-Zn-O (HIZO) are currently subject of intensive study owing to their high potential for application in flat panel displays. The device fabrication process involves a series of thin film deposition and photolithographic patterning steps. In order to minimize contamination, the substrates usually undergo a cleaning procedure using deionized water, before and after the growth of thin films by sputtering methods. The devices structure were fabricated top-contact gate TFTs using the a-IGZO films on the plastic substrates. The channel width and length were 80 and 20 um, respectively. The source and drain electrode regions were defined by photolithography and wet etching process. The electrodes consisting of Ti(15 nm)/Al(120 nm)/Ti(15nm) trilayers were deposited by direct current sputtering. The 30 nm thickness active IGZO layer deposited by rf magnetron sputtering at room temperature. The deposition condition is as follows: a rf power 200 W, a pressure of 5 mtorr, 10% of oxygen [O2/(O2+Ar)=0.1], and room temperature. A 9-nm-thick Al2O3 layer was formed as a first, third gate insulator by ALD deposition. A 290-nm-thick SS6908 organic dielectrics formed as second gate insulator by spin-coating. The schematic structure of the IGZO TFT is top gate contact geometry device structure for typical TFTs fabricated in this study. Drain current (IDS) versus drain-source voltage (VDS) output characteristics curve of a IGZO TFTs fabricated using the 3-layer gate insulator on a plastic substrate and log(IDS)-gate voltage (VG) characteristics for typical IGZO TFTs. The TFTs device has a channel width (W) of $80{\mu}m$ and a channel length (L) of $20{\mu}m$. The IDS-VDS curves showed well-defined transistor characteristics with saturation effects at VG>-10 V and VDS>-20 V for the inkjet printing IGZO device. The carrier charge mobility was determined to be 15.18 cm^2 V-1s-1 with FET threshold voltage of -3 V and on/off current ratio 10^9.

  • PDF

Fabrication of P-type Transparent Oxide Semiconductor SrCu2O2 Thin Films by RF Magnetron Sputtering (RF 마그네트론 스퍼터링을 이용한 p 타입 투명전도 산화물 SrCu2O2 박막의 제조)

  • Seok, Hye-Won;Kim, Sei-Ki;Lee, Hyun-Seok;Lim, Tae-Young;Hwang, Jong-Hee;Choi, Duck-Kyun
    • Korean Journal of Materials Research
    • /
    • v.20 no.12
    • /
    • pp.676-680
    • /
    • 2010
  • Most TCOs such as ITO, AZO(Al-doped ZnO), FTO(F-doped $SnO_2$) etc., which have been widely used in LCD, touch panel, solar cell, and organic LEDs etc. as transparent electrode material reveal n-type conductivity. But in order to realize transparent circuit, transparent p-n junction, and introduction of transparent p-type materials are prerequisite. Additional prerequisite condition is optical transparency in visible spectral region. Oxide based materials usually have a wide optical bandgap more than ~3.0 eV. In this study, single-phase transparent semiconductor of $SrCu_2O_2$, which shows p-type conductivity, have been synthesized by 2-step solid state reaction at $950^{\circ}C$ under $N_2$ atmosphere, and single-phase $SrCu_2O_2$ thin films of p-type TCOs have been deposited by RF magnetron sputtering on alkali-free glass substrate from single-phase target at $500^{\circ}C$, 1% $H_2$/(Ar + $H_2$) atmosphere. 3% $H_2$/(Ar + $H_2$) resulted in formation of second phases. Hall measurements confirmed the p-type nature of the fabricated $SrCu_2O_2$ thin films. The electrical conductivity, mobility of carrier and carrier density $5.27{\times}10^{-2}S/cm$, $2.2cm^2$/Vs, $1.53{\times}10^{17}/cm^3$ a room temperature, respectively. Transmittance and optical band-gap of the $SrCu_2O_2$ thin films revealed 62% at 550 nm and 3.28 eV. The electrical and optical properties of the obtained $SrCu_2O_2$ thin films deposited by RF magnetron sputtering were compared with those deposited by PLD and e-beam.