• 제목/요약/키워드: Electrochemical-based model

검색결과 81건 처리시간 0.02초

Estimating the State-of-Charge of Lithium-Ion Batteries Using an H-Infinity Observer with Consideration of the Hysteresis Characteristic

  • Xie, Jiale;Ma, Jiachen;Sun, Yude;Li, Zonglin
    • Journal of Power Electronics
    • /
    • 제16권2호
    • /
    • pp.643-653
    • /
    • 2016
  • The conventional methods used to evaluate battery state-of-charge (SOC) cannot accommodate the chemistry nonlinearities, measurement inaccuracies and parameter perturbations involved in estimation systems. In this paper, an impedance-based equivalent circuit model has been constructed with respect to a LiFePO4 battery by approximating the electrochemical impedance spectrum (EIS) with RC circuits. The efficiencies of approximating the EIS with RC networks in different series-parallel forms are first discussed. Additionally, the typical hysteresis characteristic is modeled through an empirical approach. Subsequently, a methodology incorporating an H-infinity observer designated for open-circuit voltage (OCV) observation and a hysteresis model developed for OCV-SOC mapping is proposed. Thereafter, evaluation experiments under FUDS and UDDS test cycles are undertaken with varying temperatures and different current-sense bias. Experimental comparisons, in comparison with the EKF based method, indicate that the proposed SOC estimator is more effective and robust. Moreover, test results on a group of Li-ion batteries, from different manufacturers and of different chemistries, show that the proposed method has high generalization capability for all the three types of Li-ion batteries.

유동 해석을 이용한 평판형 고체 산화물 연료전지의 성능 특성 분석 (II) - 비등온 모델 - (Performance Predictions of the Planar-type Solid Oxide Fuel Cell with Computational Flow Analysis (II) - Non-isothermal Model -)

  • 현희철;손정락;이준식;노승탁
    • 대한기계학회논문집B
    • /
    • 제27권7호
    • /
    • pp.963-972
    • /
    • 2003
  • Performance characteristics of the planar-type solid oxide fuel cell (SOFC) are investigated by the analysis of flow fields coupled with heat and mass transfer phenomena in anode and cathode channels. For these purposes, performance analysis of the SOFC is conducted based on electrochemical reaction phenomena in electrodes and electrolyte coupled with flow fields in anode and cathode channels. In the present study, the isothermal model adopted in the previous paper prepared by the same authors is extended to the non-isothermal model by solving energy equation additionally with momentum and mass transfer equations using CFD technique. It is found that the difference between isothermal and non-isothermal models come from non-uniform temperature distribution along anode and cathode electrodes by solving energy equation in non-isothermal model. Non-uniform temperature distribution in non-isothermal model contributes to the increase of average temperature of the fuel cell and influences its performance characteristics.

Determination of Properties of Ionomer Binder Using a Porous Plug Model for Preparation of Electrodes of Membrane-Electrode Assemblies for Polymer Electrolyte Fuel Cells

  • Park, Jin-Soo;Park, Seok-Hee;Park, Gu-Gon;Lee, Won-Yong;Kim, Chang-Soo;Moon, Seung-Hyeon
    • 전기화학회지
    • /
    • 제10권4호
    • /
    • pp.295-300
    • /
    • 2007
  • A new characterization method using a porous plug model was proposed to determine the degree of sulfonation (DS) of ionomer binder with respect to the membrane used in membrane-electrode assemblies (MEAs) and to analyze the fraction of proton pathways through ionomer-catalyst combined electrodes in MEAs for polymer electrolyte fuel cells (PEFCs). Sulfonated poly(ether ether ketone) was prepared to use a polymeric electrolyte and laboratory-made SPEEK solution (5wt.%, DMAc based) was added to catalyst slurry to form catalyst layers. In case of the SPEEK-based MEAs in this study, DS of ionomer binder for catalyst layers should be the same or higher than that of the SPEEK membrane used in the MEAs. The porous plug model suggested that most of protons were via the ionomer binder (${\sim}92.5%$) bridging the catalyst surface to the polymeric electrolyte, compared with the pathways through the alternative between the interstitial water on the surface of ionomer binder or catalyst and the ionomer binder (${\sim}7.3%$) and through only the interstitial water on the surface of ionomer or catalyst (${\sim}0.2%$) in the electrode of the MEA comprising of the sulfonated poly(ether ether ketone) membrane and the 5wt.% SPEEK ionomer binder. As a result, it was believed that the majority of proton at both electrodeds moves through ionomer binder until reaching to electrolyte membrane. The porous plug model of the electrodes of MEAs reemphasized the importance of well-optimized structure of ionomer binder and catalyst for fuel cells.

Enhanced Electrical Properties of Light-emitting Electrochemical Cells Based on PEDOT:PSS incorporated Ruthenium(II) Complex as a Light-emitting layer

  • 강용수;박성희;이혜현;조영란;황종원;최영선
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.139-139
    • /
    • 2010
  • Ionic Transition Metal Complex based (iTMC) Light-emitting electrochemical cells (LEECs) have been drawn attention for cheap and easy-to-fabricate light-emitting device. LEEC is one of the promising candidate for next generation display and solid-state lighting applications which can cover the defects of current commercial OLEDs like complicated fabrication process and strong work-function dependent sturucture. We have investigated the performance characteristics of LEECs based on poly (3, 4-ethylenedioxythiophene):poly (styrene sulfonate) (PEDOT:PSS)-incorporated transition metal complex, which is tris(2, 2'-bipyridyl)ruthenium(II) hexafluorophosphate in this study. There are advantages using conductive polymer-incorporated luminous layer to prevent light disturbance and absorbance while light-emitting process between light-emitting layer and transparent electrode like ITO. The devices were fabricated as sandwiched structure and light-emitting layer was deposited approximately 40nm thickness by spin coating and aluminum electrode was deposited using thermal evaporation process under the vacuum condition (10-3Pa). Current density and light intensity were measured using optical spectrometer, and surface morphology changes of the luminous layer were observed using XRD and AFM varying contents of PEDOT:PSS in the Ruthenium(II) complex solution. To observe enhanced ionic conductivity of PEDOT:PSS and luminous layer, space-charge-limited-currents model was introduced and it showed that the performances and stability of LEECs were improved. Main discussions are the followings. First, relationship between film thickness and performance characteristics of device was considered. Secondly, light-emitting behavior when PEDOT:PSS layer on the ITO, as a buffer, was introduced to iTMC LEECs. Finally, electrical properties including carrier mobility, current density-voltage, light intensity-voltage, response time and turn-on voltages were investigated.

  • PDF

탄소나노튜브 복합 소재를 이용한 스트레인 센서 (Strain Sensors Using Carbon Nanotube Composites)

  • 강인필;;최경락;최연선;이종원
    • 한국소음진동공학회논문집
    • /
    • 제16권7호
    • /
    • pp.762-768
    • /
    • 2006
  • To address the need for new intelligent sensing of systems, this study presents a novel strain sensor based on piezoresistivity of carbon nanotube (CNT) and its nanocomposites. Fabrication and characterization of the carbon nanocomposite material are discussed and an electrical model of the CNT strain sensor was derived based on electrochemical impedance spectroscopy analysis and strain testing. The dynamic response of the sensor on a vibrating beam was simulated using numerical analysis and it was compared with experimental test. The simulation showed good agreement with the strain response of the actual sensor.

탄소나노튜브 복합 소재를 이용한 스트레인 센서 (Strain Sensors Using Carbon Nanotube Composites)

  • 강인필;;이종원;최경락;최연선
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.930-935
    • /
    • 2006
  • To address the need for new intelligent sensing of systems, this study presents a novel strain sensor based on peizoresistivity of carbon nanotube (CNT) and its nanocomposites. Fabrication and characterization of the carbon nanocomposite material are discussed and an electrical model of the CNT strain sensor was derived based on electrochemical impedance spectroscopy analysis and strain testing. The dynamic response of the sensor on a vibrating beam was simulated using numerical analysis and it was compared with experimental test. The simulation showed good agreement with the strain response of the actual sensor.

  • PDF

The effective properties of saturated concrete healed by EDM with the ITZs

  • Chen, Qing;Jiang, Zhengwu;Zhu, Hehua;Ju, J.W.;Yan, Zhiguo;Li, Haoxin
    • Computers and Concrete
    • /
    • 제21권1호
    • /
    • pp.67-74
    • /
    • 2018
  • A differential scheme based micromechanical framework is proposed to obtain the effective properties of the saturated concrete repaired by the electrochemical deposition method (EDM) considering the interfacial transition zone (ITZ) effects. The constituents of the repaired concrete are treated as different phases, consisting of (micro-)cracks, (micro-)voids and (micro-)pores (occupied by water), deposition products, intrinsic concrete made up by the three traditional solid phases (i.e., mortar, coarse aggregates and their interfaces) and the ITZs. By incorporating the composite sphere assemblage (CSA) model and the differential approach, a new multilevel homogenization scheme is utilized to quantitatively estimate the mechanical performance of the repaired concrete with the ITZs. The CSA model is modified to obtain the effective properties of the equivalent particle, which is a three-phase composite made up of the water, deposition products and the ITZs. The differential scheme is employed to reach the equivalent composite of the concrete repaired by EDM considering the ITZ effects. Moreover, modification procedures considering the ITZ effects are presented to attain the properties of the repaired concrete in the dry state. Results in this study are compared with those of the existing models and the experimental data. It is found that the predictions herein agree better with the experimental data than the previous models.

Application of Monte Carlo Simulation to Intercalation Electrochemistry I. Thermodynamic Approach to Lithium Intercalation into LiMn2O4 Electrode

  • Kim, Sung-Woo;Pyun, Su-Il
    • 전기화학회지
    • /
    • 제5권2호
    • /
    • pp.79-85
    • /
    • 2002
  • 열역학적 관점에서 몬테 카를로 방법의 전기화학적 리튬 인터칼레이션에로의 응용에 대하여 다루었다. 우선 통계 열역학의 앙상블, Ising 및 lattice gas 모델의 기본 개념을 간단히 소개하였고, lattice gas 모델에 근거한 몬테카를로 방법을 사용하여 전이금속 산화물내로의 리튬 인터칼레이션의 열역학을 해석하였다. 특히 $LiMn_2O_4$전극에 대해 전극 포텐셜 곡선과 리튬 이온의 부분 몰 내부에너지와 엔트로피와 같은 열역학적 특성을 다루었고, 이로부터 리튬 인터칼레이션의 전기화학분야에서 몬테 카를로 방법의 유용성을 확인하였다

Fundamental Small-signal Modeling of Li-ion Batteries and a Parameter Evaluation Using Levy's Method

  • Zhang, Xiaoqiang;Zhang, Mao;Zhang, Weiping
    • Journal of Power Electronics
    • /
    • 제17권2호
    • /
    • pp.501-513
    • /
    • 2017
  • The fundamental small-signal modeling of lithium-ion (Li-ion) batteries and a parameter evaluation approach are investigated in this study to describe the dynamic behaviors of small signals accurately. The main contributions of the study are as follows. 1) The operational principle of the small signals of Li-ion batteries is revealed to prove that the sinusoidal voltage response of a Li-ion battery is a result of a sinusoidal current stimulation of an AC small signals. 2) Three small-signal measurement conditions, namely stability, causality, and linearity, are proved mathematically proven to ensure the validity of the frequency response of the experimental data. 3) Based on the internal structure and electrochemical operational mechanism of the battery, an AC small-signal model is established to depict its dynamic behaviors. 4) A classical least-squares curve fitting for experimental data, referred as Levy's method, are introduced and developed to identify small-signal model parameters. Experimental and simulation results show that the measured frequency response data fit well within reading accuracy of the simulated results; moreover, the small-signal parameters identified by Levy's method are remarkably close to the measured parameters. Although the fundamental and parameter evaluation approaches are discussed for Li-ion batteries, they are expected to be applicable for other batteries.

Prediction of ions migration behavior in mortar under 2-D ALMT application to inhibit ASR

  • Liu, Chih-Chien;Kuo, Wen-Ten
    • Computers and Concrete
    • /
    • 제14권3호
    • /
    • pp.263-277
    • /
    • 2014
  • This study investigated four electric field configurations of two-dimensional accelerate lithium migration technique (ALMT), including line-to-line, plane-to-line, contour-to-line and plane-to-plane, and analyzed the ion migration behavior and efficiency. It was found that the free ion distribution diagram and voltage distribution diagram were similar, and ions migrated in the power line direction. The electrode modules were used for the mortar specimen with w/c ratio of 0.5. The effectively processed areas accounted for 14.1%, 39.0%, 49.4% and 51.4% of total area respectively on Day 28. Larger electrode area was more advantageous to ion migration. In addition, it was proved that the two-dimensional electric field could be divided into different equifield line active regions, and regarded as affected by one-dimensional electric field, and the ion migration results in various equifield line active regions were predicted by using the duration analysis method based on the theoretical model of ion migration obtained from one-dimensional test.