DOI QR코드

DOI QR Code

Application of Monte Carlo Simulation to Intercalation Electrochemistry I. Thermodynamic Approach to Lithium Intercalation into LiMn2O4 Electrode

  • Kim, Sung-Woo (Corrosion and Interfacial Electrochemistry Research Laboratory at Department of Materials and Engineering Korea Advanced Institute of Science and Technology) ;
  • Pyun, Su-Il (Corrosion and Interfacial Electrochemistry Research Laboratory at Department of Materials and Engineering Korea Advanced Institute of Science and Technology)
  • Published : 2002.05.01

Abstract

The present article is concerned with the application of the Monte Carlo simulation to electrochemistry of lithium intercalation from the thermodynamic view point. This article first introduced the fundamental concepts of the ensembles, and Ising and lattice gas models in statistical thermodynamics for the Monte Carlo simulation in brief. Finally the Monte Carlo method based upon the lattice gas model was employed to analyse thermodynamics of the lithium intercalation into the transition metal oxides. Especially we dealt with the thermodynamic properties as the electrode potential curve and the partial molar internal energy and entropy of lithium ion in the case of the $LiMn_2O_4$ electrode, and consequently confirmed the utility of the Monte Carlo method in the field of electrochemistry of the lithium intercalation.

열역학적 관점에서 몬테 카를로 방법의 전기화학적 리튬 인터칼레이션에로의 응용에 대하여 다루었다. 우선 통계 열역학의 앙상블, Ising 및 lattice gas 모델의 기본 개념을 간단히 소개하였고, lattice gas 모델에 근거한 몬테카를로 방법을 사용하여 전이금속 산화물내로의 리튬 인터칼레이션의 열역학을 해석하였다. 특히 $LiMn_2O_4$전극에 대해 전극 포텐셜 곡선과 리튬 이온의 부분 몰 내부에너지와 엔트로피와 같은 열역학적 특성을 다루었고, 이로부터 리튬 인터칼레이션의 전기화학분야에서 몬테 카를로 방법의 유용성을 확인하였다

Keywords

References

  1. K. Binder, 'Introduction: Theory and Technical Aspects of Monte Carlo Simulations', in Monte Carlo Methods in Statistical Physics, ed. by K. Binder, 1-45, Springer-Verlag, New York (1979)
  2. D. P. Landau, 'Monte Carlo Studies of Critical and Multicritical Phenomena', in Applications of the Monte Carlo Method in Stadsdcal Physics, ed. by K. Binder, 93-123, Springer-Verlg, New York(1984)
  3. K. W. Kehr and K. Binder, 'Simuladon of Diffusion in Lattice Gases and Related Kinetic Phenomena', in Applications of the Monte Carlo Method in Statistical Physics, ed. by K. Binder, 181- 221, Springer-Verlg, New York (1984)
  4. K. Binder and D. W. Heermann, 'Monte Carlo Simulation in Statisdcal Physics-An Introducdon', Springer-Verlag, New York (1997)
  5. J. Nogues, J. L. Costa-Kiamer and K. V. Rao, Physica A, 250, 327 (1998) https://doi.org/10.1016/S0378-4371(97)00540-2
  6. K-Binderand D.P. Landau, Surf. Sci.,61,577(1976) https://doi.org/10.1016/0039-6028(76)90068-6
  7. M. Schick, J. S. Walker and M. Wortis, Phy. Rev. B, 16,2205 (1977) https://doi.org/10.1103/PhysRevB.16.2205
  8. K. Binder and D. P. Landau, Phys. Rev. B., 21,1941 (1980) https://doi.org/10.1103/PhysRevB.21.1941
  9. H. Muller-Krumbhaar, 'MonteCarlo Simulation of Crystal Growth', in Monte Carlo Methods in Statisdcal Physics, ed. by K. Binder, 261-299, Springer-Verlag, New York (1979)
  10. H. Gould and J. Tobochnik, 'An Introduction to Computer Simulation Methods - Applications to Physical Systems (Part 2)', Addison-Wesley Pub. Co., New York (1988)
  11. G. E. Murch, Philos. Mae. A, 43,871 (1981) https://doi.org/10.1080/01418618108239497
  12. D. A. Reed and G. Ehrlich, Surf. Sd., 102,588 (1981) https://doi.org/10.1016/0039-6028(81)90048-0
  13. R. Gomer, Rep. Prog. Phys., 53,917 (1990) https://doi.org/10.1088/0034-4885/53/7/002
  14. C. Uebing and R. Gomer, J. Chem. Phys., 95,7626 (1991) https://doi.org/10.1063/1.461336
  15. C. Uebing and R. Gomer, J. Chem. Phys., 95,7636 (1991) https://doi.org/10.1063/1.461337
  16. C. Uebing and R. Gomer, J. Chem. Phys., 95,7641 (1991) https://doi.org/10.1063/1.461817
  17. C. Uebing and R. Gomer, J. Chem. Phys., 95,7648 (1991) https://doi.org/10.1063/1.461338
  18. H. Sato and R. Kikuchi, J. Chem. Phys., 55,677 (1971) https://doi.org/10.1063/1.1676137
  19. G. E. Murch and R. J. Thom, Philos. Mag., 36,517 (1977) https://doi.org/10.1080/14786437708239736
  20. R. Nassif, Y. Boughaleb, A. Hekkouri, J.F. Gouyet and M. Kolb, Eur. Phys. J. B, 1,453 (1998) https://doi.org/10.1007/s100510050208
  21. M. T. M. Koper, Electrochim. Acta, 44,1207 (1998) https://doi.org/10.1016/S0013-4686(98)00223-0
  22. R. Darling and J. Newman, J. EIectmchem. Soc., 146,3765 (1999) https://doi.org/10.1149/1.1392547
  23. S.-W. Kim and S.-I. Pyun, Electrochim. Acta, 46,987 (2001) https://doi.org/10.1016/S0013-4686(00)00687-3
  24. N. Metropolis, A.W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller, J. Chem. Phys., 21,1087 (1953) https://doi.org/10.1063/1.1699114
  25. S. H. Lim, M. Hasebe, G. E. Murch and W. A. Oates, Philos. Mag. B,62,173(1990)
  26. L. D. Landau and E. M. Lifshitz, 'Statistical Physics', Pergamon, Oxford (1980)
  27. Y. Gao, J. N. Reimers and J. R. Dahn, Phys. Rev. B, 54,3878 (1996) https://doi.org/10.1103/PhysRevB.54.3878