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Abstract. The present article is concerned with the application of the Monte Carlo simulation to electrochemistry
of lithium intercalation from the thermodynamic view point. This article first introduced the fundamental concepts
of the ensembles, and Ising and lattice gas models in statistical thermodynamics for the Monte Carlo simulation in
brief. Finally the Monte Carlo method based upon the lattice gas model was employed to analyse thermodynamics
of the lithium intercalation into the transition metal oxides. Especially we dealt with the thermodynamic properties

as the electrode potential curve and the partial molar internal energy and entropy of lithium ion in the case of the |

LiMn,O, electrode, and consequently confirmed the utility of the Monte Carlo method in the field of electrochemistry
of the lithium intercalation.
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1. Introduction

The name Monte Carlo method arises from the fact that
this method uses random numbers. The Monte Carlo meth-
ods started during the 1940s, developed parallel to the per-
formance of the computers, and have become an indispen-
sable tool in many fields of science, especially in physics."®
Most of the recent programming languages for computers
contain the so-called pseudo-random number generators
using recurrence relations which are known to have periods
intrinsic to the algorithms used, but usually to satisfy the cri-
teria for randomness.”

The Monte Carlo methods have been used to the simula-
tion of the thermodynamic properties of a system at an equi-
librium state. The methods have allowed us to explore the
methodology of statistical thermodynamics and to introduce
the effect of temperature on the thermodynamic properties.
Application of the methods has expanded from the traditional
research areas of dense gases, liquids and solids to the stud-
ies of phase transition®®, growth of phases®'?, adsorption on
surface of solids''"'” and diffusion in solid bulks'®*”. Those
phenomena were theoretically analysed by using simple sta-
tistical thermodynamics based upon an Ising model or a lat-
tice gas model with appropriate approximations.
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Recently, the Monte Carlo methods based upon the lattice
gas model have been also employed in the field of electro-
chemistry to investigate 2-dimensional adsorption of ions on
the electrode surface?" and 3-dimensional electrochemical
intercalation of ions into the bulk electrodes, especially elec-
trochemical intercalation of lithium ions into transition metal
oxides where lithium ions interact strongly with each other.”**
In those works, the Monte Carlo methods have been success-
fully applied to theoretically derive the thermodynamic prop-
erties such as the relationship between the electrode potential
and either the surface coverage or the composition of ions.

This article reviewed fundamentals of the Monte Carlo
methods based upon statistical thermodynamics to analyse the
electrochemical lithium intercalation from the thermodynamic
view point. Basic concepts of statistical thermodynamics and
the procedures of the Monte Carlo simulation to calculate the
thermodynamic quantities were first introduced in brief, and
then the results theoretically calculated were compared with
those results experimentally measured on the LiMn,0, elec-
trode, one of the transition metal oxides as the intercalation
compounds.

2. Fundamentals of Statistical Thermodynamics
for Monte Carlo Method

2.1. Canonical and grandcanonical ensembles
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In order to calculate the thermodynamic properties based
upon statistical thermodynamics, let us discuss the concept of
an ensemble of systems. An ensemble is a collection of a

very large number of microstates, each constructed to be an’

instantaneous replica of the macroscopic properties of the
particular system of interest.

In general, most physical systems are in thermal contact
with the environment and exchange their energy with the
environment. This thermal contact allows energy to be
exchanged between the system and its environment in the
form of heat. Since such system of interest is usually small
in comparison to its environment, we assume that any
change in the energy of the system does not significantly
affect temperature of the environment which is referred to
the heat reservoir or heat bath. The ensemble which
describes the probability distribution of microstates in ther-
mal equilibrium with the environment is known as the
canonical ensemble (CE). In CE, all microstates have the
same volume V, the same temperature T and the same total
number of atoms or ions N with each other.

Considering an infinitely large number of microstates of
the system in CE, the probability P; of a microstate i with
energy E; is given by

p, =1 5 1
i = ZCXP(—kITT) 6))

where Z is a normalisation constant; kg, the Boltzmann’s
constant, and T represents the absolute temperature. Since

TP =1,
i

Z = ;exp(—%) . )

which is known as the partition function or sum of state
(Zustandssumme) of CE. One can obtain the ensemble aver-
age of the thermodynamic quantity of interest <A> from

E.
) = TAP, = %;Aiexp(—,;ﬁ) ®

where A; is the thermodynamic quantity A of the microstate
i

As a matter of fact, one can generate only a finite number
n of the total number of microstates N, and hence estimate
the mean value <A> by

(A) = g“Aiexp(—kfﬁ,)/Xj exp(—%)
| @
= iA iexp(—,%)/ z’;:CXP (—ki_iT)

In order to save a lot of time on calculation of the ensemble
average, we generally use an importance sampling method
by generating the configuration of microstates according to a
probability distribution function 7; as

n 1 Ei noq Ei
(A) = ;Aiaexp(—m)/;aexp(—m) )]

where 7; is generally accepted as the Boltzmann probability
itself,

T, = exp _kBT ;exp(—kBT) (6)
In this case <A> can be written as

(4)=134; %

The above importance sampling method is so-called
Metropolis algorithm?® that is described in detail as follows:
(i) Establish an initial configuration of the system,

(ii) Make a random trial change in the initial configuration,
(iii) Compute the change in the energy of the system AE due
to the trial change,

(iv) If AE is less than or equal to zero in value, accept the
new configuration and go to the step (vii),

(v) If AE is positive in value, compute the transition proba-
bility W, = exp(-AE/kgT),

(vi) If W,, is larger in value than a random number generated
between O and 1, accept the new configuration; otherwise,
retain the previous configuration,

(vii) Determine the value of the thermodynamic quantities of
interest, and then repeat the steps (ii) through (vii) to obtain
a sufficient number of the configurations of the system.

On the other hand, in case the system exchanges both heat
and mass with its environment, the probability distribution of
microstates of the system is described by the grandcanonical
ensemble (GCE) in which all microstates have the same V, T
and chemical potential u with each other. In GCE, the prob-
ability P; of a microstate i with energy E; is written as

E.
P, = éexp(—ﬁ)exp(%) 3

where E is the partition function of GCE given by

= (7]
E = exp| ——=, |ex] 9
%‘? P( i, T) Pk, T
According to the definition of the mean value, the ensemble
average of the thermodynamic quantity of interest <A> in
GCE can be obtained from

(4) = TYPA,
N i (10)

(%)

2.2. Ising and lattice gas models
Most popular model for the systems in statistical physics is
an Ising model*$® which is first used to investigate the 2nd

1 NY..
= E%;Aiexp(I/;—T)exp
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order phase transition, for example, from a paramagnet to a
ferromagnet. In order to introduce the Ising model, let us
consider each site i in the lattice associated with a number s;
meaning the spin of the site i, where s;=+1 for an up-spin
and s;=-1 for a down-spin for magnetic moment. In this
case, the total number of atoms or ions N in the lattice is
equal to the total number of sites N; of the lattice in value.

In the Ising model, the total energy of the lattice as Hamil-
tonian H in the presence of a magnetic field # is simply
given by

N .
H=-JYssi-hY s an
i i=1

where J is the exchange constant which is a measure of
interaction between the nearest neighbour spins, and s; repre-
sents the spin of the site j which is the nearest neighbour of
the site i. A particular configuration of the spins is specified
by a set of variables {s, 5, ..., 8 8; ..., sy} for all the sites
of the lattice. If J >0, the favorable configuration of the
spins is ferromagnetic; if J <0, that configuration of the
spins is antiferromagnetic.®’ In Eq. (11), the first summation
over all the nearest neighbour spins in the lattice corresponds
to the total interaction energy of the lattice.

If we interpret the down-spin as an occupied site by an
atom or ion, and the up-spin as an empty site in the lattice,
we can simply transform the Ising model to a lattices gas
model. The lattice gas model has been also of great impor-
tance to investigate the 2nd order phase transition of solids
with critical transition behaviour. In the lattice gas model, the
total energy of the lattice H in the presence of a chemical
potential u is simply written as

N
H=1UJYcc-p1y c (12)
i

i=1

where ¢; is the occupation number of the site i which is
related to s; by ¢;= (1-s;)/2: if the site i is occupied by an
atom or ion, ¢; =1 at 5; =-1; otherwise, ¢;=0 at 5;=1. A par-
ticular configuration of the lattice is specified by the set of
variables {ci, ¢; ..., ¢, ¢ ..., cy} for all the sites of the lattice.
In the case of the lattice gas model, the positive value of J in
Eq. (12) means the repulsive interaction between atoms or
ions, while the negative value of J indicates the attractive
interaction.

In the lattice gas model, it should be noted that the total
number of atoms or ions N in the lattice is less than or equal
to the total number of sites N; of the lattice in value. The dif-
ference between the Ising model and the lattice gas model is
that the total number of atoms or ions is fixed in the former,
whereas that total number of atoms or ions can be changed
in the latter during the Monte Carlo procedure.

The simple algorithms commonly used to change the con-
figuration of the system are the spin-exchange dynamics and
the single spin-flip dynamics as shown in Figs. 1(a) and (b),
respectively. One can readily expect that the total number of
atoms or ions remains as invariant in the spin-exchange
dynamics, while that total number of atoms or ions can be

i J
= 11|
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Fig. 1. Schematic diagrams of the changes in a configuration of a
system by (a) spin-exchange algorithm (Kawasaki dynamics) and
(b) single spin-flip algorithm (Glauber dynamics) for Monte Carlo
simulation.?

changed in the single spin-flip dynamics. Thus, these algo-
rithms can describe two different ensembles: the former
describes CE, whereas the latter does GCE.*” Keeping in
mind that the spin s; is interpreted as the occupation number
¢;, the spin-exchange and the single spin-flip dynamics can be
also employed in the lattice gas model to change the config-
uration of the system in CE and GCE, respectively.

2.3. Monte Carlo calculation of thermodynamic quan-
tities

Most thermodynamic studies by using the Monte Carlo
method based upon the lattice gas model have focussed on
determination of such thermodynamic quantities as the partial
molar internal energy and entropy. Those partial quantities
can be obtained by differentiation of the integral quantities
given as a function of temperature or composition. In most
cases, however, the integral quantities are not simply described
as an analytical function of temperature or composition. It is
thus necessary to evaluate the integral quantities at various
temperatures and compositions by multiple Monte Carlo pro-
cedures. After that one can differentiate those integral quantities
with respect to temperature and composition to obtain the
partial quantities.

Instead of the crude method, we can easily calculate the
partial quantities by a single Monte Carlo procedure at a
given temperature® according to the relationship between
the partial quantities and the fluctuations in the integral
quantities®®. In GCE, the equilibrium fraction of the sites
occupied by atoms or ions & is obtained by averaging the
occupation number ¢; over all the sites in the lattice N; from

1
6= e (13),

at given y and T with a single Monte Carlo procedure.
According to Eq. (13), the plot of u vs. & can be obtained
without multiple Monte Carlo procedures.
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The partial molar internal energy U and entropy § at con-
stant V and T can be also calculated by using the relationships
between those partial quantities and the fluctuations in U and
N about their mean values in GCE in a single Monte Carlo
procedure. The partial molar internal energy U is described
as a function of the independent variables i, V and T,

o=, .= (5, (3, . 4

The partial derivatives in Eq. (14) can be obtained by differ-
entiating the mean value of U and N with respect to p.

According to the definition of the mean value, the average
number of atoms or ions <N> in GCE is

(N) = ZP,'N
N

| = exp(;%")%Nexp(%);exp(—;—})

where Q is the grandcanonical ensemble potential®>. Differ-
entiation of Eq. (15) with respect to i at constant V and T
. gives

(5)
ou V,T

= exp( )%[kBT kj;’ (%%)}exp(k T)Zexp( kET)

(16)

From the relationship of dQ = -Vdp = -SdT- Ndu*®, it can be
readily seen that (dQ/dl)yr=-<N> and hence

N _ b a2y a2y _ Var(N
(), = matad - () = Yarihd a7

(15)

where Var(N) is the variance of N in GCE.
In addition, since the average internal energy <U> is

(V) = zPU —exp(k T)ZUexp(k T)zexp( kET) (18)

the partial derivative of U with respect to 4 at constant V and
T is also given by

(3= olerz i 73]

E;
x exp(k T)Zexp( % T) 19)
(U,N)
=,€7<<UN>—<U><N>)= "VkBT

where Cov(U, N) is the covariance of U and N in GCE.
From Egs. (14), (17) and (19), the partial molar internal
energy [7 at constant V and T in GCE is

7 _ Cov(U,N)
U= Var(N) ’ (20)

Since u is given as constant in GCE, the partial molar
entropy § at constant V and T is expressed as

v _ 1[Cov(U,N)
§= T[ Var(N) } @b

3. Application of Monte Carlo Method to Electro-
chemical Lithium Intercalation into LiMn,O,

3.1. Relationship between electrode potential and
lithium content

The Monte Carlo methods based upon the lattice gas
model have played an important role in our understanding of
the thermodynamic properties of 2-dimensional adsorption
and 3-dimensional intercalation of ions in the field of elec-
trochemistry. Recently, the Monte Carlo methods have suc-
cessfully applied to theoretically analyse the lithium
intercalation into transition metal oxides involving the disor-
der to order phase transition in terms of the relationship
between the electrode potential and lithium content.?2?®
Among those transition metal oxides, let us apply the Monte
Carlo method to investigate thermodynamics of the electro-
chemical lithium intercalation into the LiMn,O, electrode in
rechargeable lithium batteries.

For the Monte Carlo simulation, we employed the two
sub-lattice model of the LiMn,0, electrode well-established
in the previous works****?”, In consideration of the first- and
second-nearest interactions between lithium ions in the

LiMn,04 electrode, Hamiltonian H of the lattice is defined
22,23)
as

=J Zc +J22c cp— (s+u)2c 22)

where J; and J, are the effective pairwise interaction para-
meters for the first- and second-nearest neighbouring lithium
ions, respectively; &, the effective binding energy between
lithium ion and manganese oxide matrix; u, the chemical
potential of lithium ion; ¢, the local occupation number of
the site i, and ¢; and ¢, represent the local occupation numbers
of the first- and second-nearest neighbour sites, respectively:
¢i, ¢ or ¢ =1 if the site is occupied by lithium ion, and ¢;, ¢;
or ¢, =0 otherwise.

As a matter of fact, the interaction parameters J1, J> and €
can not simply represent the direct interactions between lithium
ions and oxide matrix. In the previous works?>?>?7_ for the
sake of simplicity, the effective values of those parameters
were generally determined by fitting the electrode potential
curve theoretically calculated by the Monte Carlo simulation
to that curve experimentally measured, under the assumption
that those parameters are invariant with lithium content during
the lithium intercalation. In those works, the values of the
effective interaction parameters were similarly taken as J; =
37.5 meV (the repulsive interaction), J, =-4.0 meV (the
attractive interaction) and £€=4.12 eV which allowed us to
successfully approximate the thermodynamic properties of
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Electrode Potential / V.
P

4.0

tithium Content in the Sub-lattice

0.2 04 06 0.8 1.0
Lithium Content (1-3) in Li, Mn, O,

Fig. 2. Electrode potential vs. lithium content curve (@) and the
plots of (1-8); (O) and (1-5), (A) with respect to (1-3), theoretically
obtained by the Monte Carlo method at T =298 K. The average
lithium content (1-9) at the points (a), (b) and (c) are equal to 0.2,
0.5 and 0.8, respectively.

the LiMn,Oy electrode %27

Fig. 2 presents the electrode potential vs. lithium content
curve and the plots of lithium content in one sub-lattice (1-0);
and lithium content in the other sub-lattice (1-8), with
respect to average lithium content (1-8) in the lattice, theoret-
ically obtained from Eq. (13) by the Monte Carlo method
based upon the lattice gas model, noting that the electrode
potential E is written as E = —p/e. The simulation was per-
formed in GCE by using the Metropolis algorithm and the
single spin-flip dynamics under the periodic boundary condition
to minimise the finite size effect¥. In Fig. 2, as lithium content
increased, the electrode potential curve showed a steep
potential drop at (1-8) = 0.5, which is typical of the ordering
of lithium ions in the electrode. The electrode potential curve
theoretically calculated was well consistent in value and
shape with that electrode potential curve experimentally
measured?>?7",

The ordering of lithium ions can be envisaged by considering
the difference between (1-6); and (1-6), in value at the same
(1-0) in Fig. 2 with the aid of the local cross-sectional snap-
shots of the equilibrium configurations of the cubic lattice in
Figs. 3(a), (b) and (c). At the point (a) in Fig. 2, (1-8); and
(1-6), were the same in value. From the equilibrium config-
uration of the lattice in Fig. 3(a), which was simulated at the
lithium content corresponding to the point (a) in Fig. 2, it is
readily seen that lithium ions are randomly distributed over the
lattice. This indicates that the lithium intercalation proceeds
in the presence of the disordered phase.

At (1-8) = 0.5, corresponding to the point (b) in Fig. 2, (1-8),
and (1-6); deviated most strongly from (1-6). As shown in
Fig. 3(b), the highly ordered phase appears, i.e. lithium ions
mainly reside within one sub-lattice. It should be noted that
most of lithium ions have purely the attractive second-nearest
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Fig. 3. Local cross-sectional snapshots of the equilibrium
configurations of the cubic lattice obtained by the Monte Carlo
method at (a) (1-8) = (1-8) = (1-8), = 0.2, (b) (1-3) = 0.5, (1-3); = 0.96
and (1-8), = 0.04, and (c¢) (1-8) = (1-8), = (1-8), = 0.8. The open and
closed circles represent lithium ions at the sites of the sub-lattice 1
and 2, respectively.

neighbours to avoid the repulsive interaction that increases
the ensemble energy of the lattice. As the concentration of
lithium ion increases further, the order to disorder transition
occurs because the random site occupation of lithium ions
with both the first- and second-nearest neighbours (Fig. 3(c))
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Fig. 4. Plots of (a) the partial molar internal energy ULx and (b)
entropy s of lithium ion at constant volume V and temperature 7
with respect to (1-6), theoretically calculated by the Monte Carlo
method (QO) at T =298 K. The partial molar enthalpy and entropy
experimentally determined at constant pressure P and temperature
T from the measured temperature dependence of the electrode
potential™> (@) are also plotted in figures. The dashed lines
represent the partial molar internal energy and entropy calculated
for the ideal solution.

reduces the ensemble energy of the lattice.

3.2. Partial molar thermodynamic quantities
Figs. 4(a) and (b) demonstrate the plots of the partial
molar internal energy U,_ and entropy §,, with respect to
lithium content (1-6), calculated from Egs. (20) and (21),
respectively, by the Monte Carlo method. The partial molar
quantities experimentally measured from the temperature
dependence of the electrode potential® are also presented in
figures. The partial molar quantities theoretically calculated
by the Monte Carlo method well coincided in value and

- shape with the results experimentally measured.
All the partial molar quantities alike showed a negative

deviation below (1-8) =0.5 and a positive deviation above
(1-6) = 0.5 from those values calculated for an ideal solution.
Here, the ideal solution means that the lithium intercalation
proceeds into the disordered phase in the whole range of
(1-9). Below (1-6) =0.5 the negative deviation is due to the
attractive interaction energy between lithium ions in the same
sub-lattice, as equivalent to a non-ideal solution with the
attractive interaction, whose mixing enthalpy deviates nega-
tively from that mixing enthalpy of the ideal solution. By
contrast, above (1-6) = 0.5 the positive deviation is caused by
the repulsive interaction energy between lithium ions in the
other sub-lattice, as equivalent to a non-ideal solution with
the repulsive interaction.

From the results theoretically calculated in the case of the
LiMn,0, electrode, one can easily expect that the Monte
Carlo method based upon the lattice gas model is strongly
applicable to theoretically investigate such thermodynamic
properties as the electrode potential curve and the partial
molar internal energy and entropy of the intercalation com-
pounds.

4. Conclusions

The present article first introduced the basic concepts of
the canonical and grandcanonical ensembles, and the Ising
and lattice gas models in statistical physics for the Monte
Carlo simulation, and then applied the Monte Carlo method
based upon the lattice gas model to analyse thermodynamics
of the lithium intercalation in the filed of electrochemistry.
From the comparison between the results theoretically calcu-
lated and experimentally measured on the LiMn,0, elec-
trode, it was found that the Monte Carlo method with
appropriate algorithms is a reliable and powerful tool to anal-
yse the intercalation of lithium ions interacting with each
other from the thermodynamic view point.
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