• 제목/요약/키워드: Electrochemical modification

검색결과 157건 처리시간 0.047초

리튬이온 전지용 분리막의 표면 개질 기술 및 연구 동향 (Surface Modification Technology and Research Trends of Separators for Lithium-Ion Batteries)

  • 하성민;김대섭;곽철환;이영석
    • 공업화학
    • /
    • 제33권4호
    • /
    • pp.343-351
    • /
    • 2022
  • 리튬이온 전지(lithium-ion batteries, LIBs)는 높은 에너지 밀도, 느린 자가방전율, 고율 충전 능력 및 긴 배터리 수명 등의 좋은 성능으로 촉망받는 에너지 저장 장치로 꼽힌다. 그러나 고에너지 밀도의 전기자동차 및 대형 디바이스 산업에서 이러한 LIBs의 적용은 큰 안전 문제를 일으키고 있다. 이러한 문제를 해결하기 위하여 열적 안정성 및 내재적 안전성이 높은 재료를 개발하는 것이 LIBs의 안정성 및 전기화학적 성능을 향상시키는 궁극적인 해결방법이다. 본 총설에서는 상용 분리막의 안정성 문제 극복을 위한 분리막의 표면 개질 기술을 소개하였으며 이를 이용하여 개질된 리튬이온 전지용 분리막을 활용한 연구 동향을 요약, 정리하였다. 또한 이를 기반으로 표면 개질에 따른 분리막에 대한 향후 전망을 논의하였다.

Electrochemical Immunosensor Using a Gas Diffusion Layer as an Immobilization Matrix

  • Kim, Yong-Tae;Oh, Kyu-Ha;Kim, Joo-Ho;Kang, Hee-Gyoo;Choi, Jin-Sub
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권6호
    • /
    • pp.1975-1979
    • /
    • 2011
  • The modification of a gas diffusion layer (GDL), a vital component in polymer electrolyte fuel cells, is described here for use in the electrochemical detection of antibody-antigen biosensors. Compared to other substrates (gold foil and graphite), mouse anti-rHBsAg monoclonal antibody immobilized on gold-coated GDL (G-GDL) detected analytes of goat anti-mouse IgG antibody-ALP using a relatively low potential (-0.0021 V vs. Ag/AgCl 3 M NaCl), indicating that undesired by-reactions during electrochemical sensing should be avoided with G-GDL. The dependency of the signal against the concentration of analytes was observed, demonstrating the possibility of quantitative electrochemical biosensors based on G-GDL substrates. When a sandwich method was employed, target antigens of rHBsAg with a concentration as low as 500 ng/mL were clearly measured. The detection limit of rHBsAg was significantly improved to 10 ng/mL when higher concentrations of the 4-aminophenylphosphate monosodium salt (APP) acting on substrates were used for generating a redox-active product. Additionally, it was shown that a BSA blocking layer was essential in improving the detection limit in the G-GDL biosensor.

비접촉 SPL기법을 이용한 단결정 실리콘 웨이퍼 표면의 극초단파 펄스 전기화학 초정밀 나노가공 (Nanomachining on Single Crystal Silicon Wafer by Ultra Short Pulse Electrochemical Oxidation based on Non-contact Scanning Probe Lithography)

  • 이정민;김선호;김택현;박정우
    • 한국생산제조학회지
    • /
    • 제20권4호
    • /
    • pp.395-400
    • /
    • 2011
  • Scanning Probe Lithography is a method to localized oxidation on single crystal silicon wafer surface. This study demonstrates nanometer scale non contact lithography process on (100) silicon (p-type) wafer surface using AFM(Atomic force microscope) apparatuses and pulse controlling methods. AFM-based experimental apparatuses are connected the DC pulse generator that supplies ultra short pulses between conductive tip and single crystal silicon wafer surface maintaining constant humidity during processes. Then ultra short pulse durations are controlled according to various experimental conditions. Non contact lithography of using ultra short pulse induces electrochemical reaction between micro-scale tip and silicon wafer surface. Various growths of oxides can be created by ultra short pulse non contact lithography modification according to various pulse durations and applied constant humidity environment.

Metal Nano Particle modified Nitrogen Doped Amorphous Hydrogenated Diamond-Like Carbon Film for Glucose Sensing

  • Zeng, Aiping;Jin, Chunyan;Cho, Sang-Jin;Seo, Hyun-Ook;Lim, Dong-Chan;Kim, Doo-Hwan;Hong, Byung-You;Boo, Jin-Hyo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.434-434
    • /
    • 2011
  • Electrochemical method have been employed in this work to modify the chemical vapour deposited nitrogen doped hydrogen amorphous diamond-like carbon (N-DLC) film to fabricate nickel and copper nano particle modified N-DLC electrodes. The electrochemical behaviour of the metal nano particle modified N-DLC electrodes have been characterized at the presence of glucose in electrolyte. Meanwhile, the N-DLC film structure and the morphology of metal nano particles on the N-DLC surface have been investigated using micro-Raman spectroscopy, X-ray photoelectron spectroscopy and atomic force microscopy. The nickel nano particle modified N-DLC electrode exhibits a high catalytic activity and low background current, while the advantage of copper modified N-DLC electrode is drawn back by copper oxidizations at anodic potentials. The results show that metal nano particle modification of N-DLC surface could be a promising method for controlling the electrochemical properties of N-DLC electrodes.

  • PDF

Effect of Tantalum and Lanthanum Addition on Electrochemical Property of Austenitic Stainless Steel in a Simulated PEMFC Environment

  • Kim, Kwang-Min;Koh, Seong-Ung;Kim, Kyoo-Young
    • Corrosion Science and Technology
    • /
    • 제7권6호
    • /
    • pp.338-343
    • /
    • 2008
  • The electrochemical properties of W-modified austenitic stainless steels containing Ta and La were evaluated in a $H_{3}PO_{4}$ type PEMFC environment. Electrochemical test was conducted in 0.05 M $H_{3}PO_{4}$ solution at $80^{\circ}C$ and electrical property was conducted by contact resistance test. XPS was conducted to analyze the chemical elements consisting of passive film. Addition of La and Ta in W-modified austenitic stainless steel shows not only better corrosion resistance but also better electrical property.

Alizarin Red S modified electrochemical sensors for the detection of aluminum ion

  • Chang, Seung-Cheol
    • 센서학회지
    • /
    • 제19권6호
    • /
    • pp.421-427
    • /
    • 2010
  • Alizarin Red S modified screen printed carbon electrodes were developed for the electrochemical detection of aluminum ion. The electrodes developed use screen-printed carbon electrodes(SPCEs) coupled with chemical modification with an organic chelator, Alizarin Red S(ARS), for aluminum ion detection in aqueous solution. For sensor fabrication ARS was directly immobilized on the surface of SPCEs using PVA-SbQ(The poly(vinyl alcohol) bearing stryrylpyridinium groups). Aluminum concentrations were indirectly estimated by amperometric determination of the non-complexed ARS immobilized on the electrodes, after its complexation with aluminum. The sensitivity of the sensor developed was $3.8\;nA{\mu}M^{-1}cm^{-2}$ and the detection limit for aluminum was $25\;{\mu}M$.

Microwave-treated Expandable Graphite Granule for Enhancing the Bioelectricity Generation of Microbial Fuel Cells

  • Kim, Minsoo;Song, Young Eun;Li, Shuwei;Kim, Jung Rae
    • Journal of Electrochemical Science and Technology
    • /
    • 제12권3호
    • /
    • pp.297-301
    • /
    • 2021
  • Microbial fuel cells (MFCs) convert chemical energy to electrical energy via electrochemically active microorganisms. The interactions between microbes and the surface of a carbon electrode play a vital role in capturing the respiratory electrons from bacteria. Therefore, improvements in the electrochemical and physicochemical properties of carbon materials are essential for increasing performance. In this study, a microwave and sulfuric acid treatment was used to modify the surface structure of graphite granules. The prepared expandable graphite granules (EGG) exhibited a 1.5 times higher power density than the unmodified graphite granules (1400 vs. 900 mW/m3). Scanning electron microscopy and Fourier transform infrared spectroscopy revealed improved physical and chemical characteristics of the EGG surface. These results suggest that physical and chemical surface modification using sulfuric acid and microwave heating improves the performance of electrode-based bioprocesses, such as MFCs.

Effect of the Amplitude in Ultrasonic Nano-crystalline Surface Modification on the Corrosion Properties of Alloy 600

  • Kim, Ki Tae;Kim, Young Sik
    • Corrosion Science and Technology
    • /
    • 제18권5호
    • /
    • pp.196-205
    • /
    • 2019
  • Surface modification techniques are known to improve SCC by adding large compressive residual stresses to metal surfaces. This surface modification technology is attracting attention because it is an economical and practical technology compared to the maintenance method of existing nuclear power plants. Surface modification techniques include laser, water jet and ultrasonic peening, pinning and ultrasonic Nano-crystal surface modification (UNSM). The focus of this study was on the effect of ultrasonic amplitude in UNSM treatment on the corrosion properties of Alloy 600. A microstructure analysis was conducted using an optical microscope (OM), scanning electron microscope (SEM) and electron backscattering diffraction (EBSD). A cyclic polarization test and AC-impedance measurement were both used to analyze the corrosion properties. UNSM treatment influences the corrosion resistance of Alloy 600 depending on its amplitude. Below the critical amplitude value, the pitting corrosion properties are improved by grain refinement and compressive residual stress, but above the critical amplitude value, crevices are formed by the formation of overlapped waves. These crevices act as corrosion initiators, reducing pitting corrosion resistance.