Browse > Article
http://dx.doi.org/10.14773/cst.2019.18.5.196

Effect of the Amplitude in Ultrasonic Nano-crystalline Surface Modification on the Corrosion Properties of Alloy 600  

Kim, Ki Tae (Research Center for Energy and Clean Technology, School of Materials Science and Engineering, Andong National University)
Kim, Young Sik (Research Center for Energy and Clean Technology, School of Materials Science and Engineering, Andong National University)
Publication Information
Corrosion Science and Technology / v.18, no.5, 2019 , pp. 196-205 More about this Journal
Abstract
Surface modification techniques are known to improve SCC by adding large compressive residual stresses to metal surfaces. This surface modification technology is attracting attention because it is an economical and practical technology compared to the maintenance method of existing nuclear power plants. Surface modification techniques include laser, water jet and ultrasonic peening, pinning and ultrasonic Nano-crystal surface modification (UNSM). The focus of this study was on the effect of ultrasonic amplitude in UNSM treatment on the corrosion properties of Alloy 600. A microstructure analysis was conducted using an optical microscope (OM), scanning electron microscope (SEM) and electron backscattering diffraction (EBSD). A cyclic polarization test and AC-impedance measurement were both used to analyze the corrosion properties. UNSM treatment influences the corrosion resistance of Alloy 600 depending on its amplitude. Below the critical amplitude value, the pitting corrosion properties are improved by grain refinement and compressive residual stress, but above the critical amplitude value, crevices are formed by the formation of overlapped waves. These crevices act as corrosion initiators, reducing pitting corrosion resistance.
Keywords
Alloy 600; UNSM; Amplitude; Corrosion; Electrochemical properties;
Citations & Related Records
연도 인용수 순위
  • Reference
1 P. Crooker and T. Lian, Materials Reliability Program: Technical Basis for Primary Water Stress Corrosion Cracking Mitigation by Surface Stress Improvement, MRP-267, Revision 2, EPRI, Product ID 3002008083 (2016).
2 P. Crooker, Materials Reliability Program: Topical Report for Primary Water Stress Corrosion Cracking Mitigation by Surface Stress Improvement (MRP-335, Revision 3-A), EPRI, Product ID 3002009241 (2016).
3 J. Zhu, X. Jiao, C. Zhou, and H. Gao, Enrgy. Proced., 16, 153 (2012).   DOI
4 J.-D. Kim and Y. SANO, J. Weld. Join., 34, 13 (2016).   DOI
5 H. Soyama, J. Mater. Process. Technol., 269, 65 (2019).   DOI
6 M. Ijiri and T. Yoshimura, Heliyon, 4, e00747 (2018).   DOI
7 A. Amanov and R. Umarov, Appl. Surf. Sci., 441, 515 (2018).   DOI
8 D. Feron, Nuclear corrosion science and engineering, 1st ed., p. 484, Woodhead Publishing, Cambridge (2012).
9 W. T. Tsai, C. S. Chang, and J. T. Lee, Corros. Sci., 50, 98 (1994).   DOI
10 W. H. Friske and J. P. Page, J. Mater. Energ. Syst., 1, 20 (1979).   DOI
11 O. Badran, N. Kloub, and M. A. Tal, Am. J. Appl. Sci., 5, 1397 (2008).   DOI
12 A. Telang, A. S. Gill, S. Teysseyre, S. R. Mannava, D. Qian, and V. K. Vasudevan, Corros. Sci., 90, 434 (2015).   DOI
13 J. Lu, H. Qi, K. Luo, M. Luo, and X. Cheng, Corros. Sci., 80, 53 (2014).   DOI
14 D. Karthik and S. J. Swaroop, J. Alloys Compd., 694, 1309 (2017).   DOI
15 P. Peyre, X. Scherpereel, L. Berthe, C. Carboni, R. Fabbro, G. Beranger, and C. Lemaitre, Mat. Sci. Eng. A-Struct., 280, 294 (2000).   DOI
16 J. Lu, K. Luo, D. Yang, X. Cheng, J. Hu, F. Dai, H. Qi, L. Zhang, J. Zhong, Q. Wang, and Y. Zhang, Corros. Sci., 60, 145 (2012).   DOI
17 K. Hirano, K. Enomoto, E. Hayashi, and K. Kurosawa, J. Soc. Mater. Sci., 45, 740 (1996).   DOI
18 M. Ijiri, D. Shimonishi, S. Tani, N. Okada, M. Yamamoto, D. Nakagawa, K. Tanaka, and T. Yoshimura, Int. J. Lightweight Mater. Manufact., 2, 255 (2019).   DOI
19 Y. Feng, S. Hu, D. Wang, J. Liu, and C. Zhang, Surf. Eng., 33, 696 (2017).   DOI
20 B. Ahmad and M. E. Fitzpatrick, Metall. Mater. Trans. A, 46, 1214 (2015).   DOI
21 Y. He, K. Li, I. S. Cho, C. S. Lee, I. G. Park, J.-I. Song, C.-W. Yang, J-H. Lee, and K. Shin, Appl. Microsc., 45, 155 (2015).   DOI
22 A. Cherif, Y. Pyoun, and B. Scholtes, J. Mater. Eng. Perform., 19, 282 (2010).   DOI
23 C. Ye, A. Telang, A. S. Gill, S. Suslov, Y. Idell, K. Zweiacker, J. M. K. Wiezorek, Z. Zhou, D. Qian, S. R. Mannava, and V. K. Vasudevan, Mater. Sci. Eng. A, 613, 274 (2014).   DOI
24 A. Cherif, Y. Pyoun, and B. Scholtes, J. Mater. Eng. Perform., 19, 282 (2010).   DOI
25 M. K. Khan, Y. J. Liu, Q. Y. Wang, Y. S. Pyun, and R. Kayumov, Fatigue Fract. Eng. Mater. Struct., 39, 427 (2016).   DOI
26 A. Amanova, R. Karimbaeva, E. Malekib, O. Unalc, Y. S. Pyuna, and T. Amanovd, Surf. Coat. Technol., 358, 695 (2019).   DOI
27 J. H. Lee, K. T. Kim, Y. S. Pyoun, and Y. S. Kim, Corros. Sci. Tech., 15, 226 (2016).   DOI
28 J. H. Lee and Y. S. Kim, Corros. Sci. Tech., 14, 313 (2015).   DOI
29 K. T. Kim, J. H. Lee, and Y. S. Kim Materials., 10, 713 (2017).   DOI
30 K. T. Kim and Y. S. Kim Materials, 12, 3165 (2019).   DOI
31 M.Yasuoka, P. Wang, K. Zhang, Z. Qiu, K. Kusaka, Y. S. Pyoun, and R. Murakami, Surf. Coat. Technol., 218, 93 (2013).   DOI
32 S. Li, Z. Ren, Y. Dong, C. Ye, G. Cheng, and H. Cong, J. Electrochem. Soc., 164, C682 (2017).   DOI
33 K. D. Ralston and N. Birbilis, Corrosion, 66, 075005-1 (2010).   DOI
34 S. Luo, L. Zhou, X. Wang, X. Cao, X. Nie, and W. He, Materials, 11, 563 (2018).   DOI
35 M. G. Fontana, Corrosion Engineering, 3rd ed., p. 29, Mc-Graw-Hill Book Co., New York (1987).
36 S. J. Splinter, R. Rofagha, N. S. McIntyre, and U. Erb, Surf. Interface Anal., 24, 181 (1996).   DOI
37 G. Palumbo, K. T. Aust, and U. Erb, Mater. Sci. Forum, 225-227, 281 (1996).   DOI
38 G. Palumbo, S. J. Thorpe, and K. T. Aust, Scr. Metall. Mater., 24, 1347 (1990).   DOI
39 X. Wang and D. Li, Electrochim. Acta, 47, 3939 (2002).   DOI
40 X. Wang and D. Li, Wear, 255, 836 (2003).   DOI
41 T. Wang, J. Yu, and B. Dong, Surf. Coat. Technol., 200, 4777 (2006).   DOI
42 K. T. Liu and J. G. Duh, J. Electroanal. Chem., 618, 45 (2008).   DOI
43 S. Ghosh, G. Dey, R. Dusane, and A. Grover, J. Alloy. Compd., 426, 235 (2006).   DOI
44 O. Takakuwa and H. Soyama, Adv. Chem. Eng. Sci., 5, 62 (2015).   DOI
45 B. Wu, J. Zhang, L. Zhang, Y. S. Pyoun, and R. I. Murakami, Appl. Surf. Sci., 321, 318 (2014).   DOI