Browse > Article
http://dx.doi.org/10.5012/bkcs.2011.32.6.1975

Electrochemical Immunosensor Using a Gas Diffusion Layer as an Immobilization Matrix  

Kim, Yong-Tae (Department of Chemical Engineering, Inha University)
Oh, Kyu-Ha (Biofocus Co., Ltd.)
Kim, Joo-Ho (Biofocus Co., Ltd.)
Kang, Hee-Gyoo (Bio-medical Laboratory, Department of Biomedical Laboratory Science, College of Health Sciences, Eulji University)
Choi, Jin-Sub (Department of Chemical Engineering, Inha University)
Publication Information
Abstract
The modification of a gas diffusion layer (GDL), a vital component in polymer electrolyte fuel cells, is described here for use in the electrochemical detection of antibody-antigen biosensors. Compared to other substrates (gold foil and graphite), mouse anti-rHBsAg monoclonal antibody immobilized on gold-coated GDL (G-GDL) detected analytes of goat anti-mouse IgG antibody-ALP using a relatively low potential (-0.0021 V vs. Ag/AgCl 3 M NaCl), indicating that undesired by-reactions during electrochemical sensing should be avoided with G-GDL. The dependency of the signal against the concentration of analytes was observed, demonstrating the possibility of quantitative electrochemical biosensors based on G-GDL substrates. When a sandwich method was employed, target antigens of rHBsAg with a concentration as low as 500 ng/mL were clearly measured. The detection limit of rHBsAg was significantly improved to 10 ng/mL when higher concentrations of the 4-aminophenylphosphate monosodium salt (APP) acting on substrates were used for generating a redox-active product. Additionally, it was shown that a BSA blocking layer was essential in improving the detection limit in the G-GDL biosensor.
Keywords
Graphite; Electrochemical detection; Biosensors; Gas diffusion layer;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Mehta, V.; Cooper, J. S. J. Power Sources 2003, 114, 32.   DOI   ScienceOn
2 Liu, S.; Ju, H. Biosens. Bioelectron. 2003, 19, 177.   DOI   ScienceOn
3 Wang, J.; Musameh, M. Anal. Chem. 2003, 75, 2075.   DOI   ScienceOn
4 Wang, J. Electroanalysis 2005, 17, 7.   DOI   ScienceOn
5 Hammerle, M.; Achmann, S.; Moos, R. Electroanalysis 2008, 20, 2279.   DOI   ScienceOn
6 Vengasandra, S. G.; Lynch, M.; Xu, J.; Henderson, E. Nanotechnology 2005, 16 2052.   DOI   ScienceOn
7 Kumbur, E. C.; Sharp, K. V.; Mench, M. M. J. Electrochem. Soc. 2007, 154, B1315.   DOI   ScienceOn
8 Lee, C. S.; Kwon, D.; Yoo, J. E.; Lee, B. G.; Choi, J.; Chung, B. H. Sensors 2010, 10, 5160.   DOI   ScienceOn
9 Thompson, R. Q.; Barone III, G. C.; Halsall, H. B.; Heineman, W. R. Anal. Biochem. 1991, 192, 90.   DOI
10 Limoges, B.; Degrand, C. Anal. Chem. 1996, 68, 4141.   DOI   ScienceOn
11 Pemberton, R. M.; Hart, J. P.; Stoddard, P.; Foulkes, J. A. Biosens. Bioelectron. 1999, 14, 495.   DOI   ScienceOn
12 Ohtsuka, K.; Endo, H.; Morimoto, K.; Vuong, B. N.; Ogawa, H.; Imai, K.; Takenaka, S. Anal. Sci. 2008, 24, 1619.   DOI   ScienceOn
13 Serra, B.; Morales, M. D.; Reviejo, A. J.; Hall, E. H.; Pingarron, J. M. Anal. Biochem. 2005, 336, 289.   DOI   ScienceOn
14 Benziger, J.; Nehlsen, J.; Blackwell, D.; Brennan, T.; Itescu, J. J. Membr. Sci. 2005, 261, 98.   DOI   ScienceOn