Browse > Article
http://dx.doi.org/10.33961/jecst.2020.01739

Microwave-treated Expandable Graphite Granule for Enhancing the Bioelectricity Generation of Microbial Fuel Cells  

Kim, Minsoo (School of Chemical Engineering, Pusan National University)
Song, Young Eun (School of Chemical Engineering, Pusan National University)
Li, Shuwei (School of Chemical Engineering, Pusan National University)
Kim, Jung Rae (School of Chemical Engineering, Pusan National University)
Publication Information
Journal of Electrochemical Science and Technology / v.12, no.3, 2021 , pp. 297-301 More about this Journal
Abstract
Microbial fuel cells (MFCs) convert chemical energy to electrical energy via electrochemically active microorganisms. The interactions between microbes and the surface of a carbon electrode play a vital role in capturing the respiratory electrons from bacteria. Therefore, improvements in the electrochemical and physicochemical properties of carbon materials are essential for increasing performance. In this study, a microwave and sulfuric acid treatment was used to modify the surface structure of graphite granules. The prepared expandable graphite granules (EGG) exhibited a 1.5 times higher power density than the unmodified graphite granules (1400 vs. 900 mW/m3). Scanning electron microscopy and Fourier transform infrared spectroscopy revealed improved physical and chemical characteristics of the EGG surface. These results suggest that physical and chemical surface modification using sulfuric acid and microwave heating improves the performance of electrode-based bioprocesses, such as MFCs.
Keywords
Microbial Fuel Cell; Expandable Graphite Granule; Microwave Oven;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y.E. Song, M.M. El-Dalatony, C. Kim, M.B. Kurade, B.-H. Jeon, J.R. Kim, Int. J. Hydrog. Energy., 2019, 44(4), 2372-2379.   DOI
2 Y.E. Song, H.C. Boghani, H.S. Kim, B.G. Kim, T. Lee, B.-H. Jeon, G.C. Premier, J.R. Kim, Energies. 2017, 10(5), 596.   DOI
3 J.R. Kim, S. Cheng, S.-E. Oh, B.E. Logan, Environ. Sci. Technol., 2007, 41(3), 1004-1009.   DOI
4 S. Pandit, V. Patel, M. Ghangrekar, D. Das, J. Environ. Manage., 2014, 17(2-4), 252-267.
5 Y. Yuan, S.-H. Kim, Bull Korean Chem Soc., 2008, 29(7), 1344-1348.   DOI
6 J. Liu, Y. Qiao, C.X. Guo, S. Lim, H. Song, C.M. Li, Bioresour. Technol., 2012, 114, 275-280.   DOI
7 Q. Deng, X. Li, J. Zuo, A. Ling, B.E. Logan, J. Power Sources., 2010, 195(4), 1130-1135.   DOI
8 P. Aelterman, M. Versichele, M. Marzorati, N. Boon, W. Verstraete, Bioresour. Technol., 2008, 99(18), 8895-8902.   DOI
9 M. Di Lorenzo, K. Scott, T.P. Curtis, I.M. Head, Chem. Eng. J., 2010, 156(1), 40-48.   DOI
10 C. Kim, J.H. Lee, J. Baek, D.S. Kong, J.-G. Na, J. Lee, E. Sundstrom, S. Park, J.R. Kim, ChemSusChem. 2020, 13(3), 564-573.   DOI
11 K. Rabaey, P. Clauwaert, P. Aelterman, W. Verstraete, Environ. Sci. Technol., 2005, 39(20), 8077-8082.   DOI
12 K. Rabaey, L. Angenent, U. Schroder, J. Keller, Bioelectrochemical systems, IWA publishing, London, 2009.
13 S. Lee, H. min Kim, D.G. Seong, D. Lee, Carbon. 2019, 143, 650-659.   DOI
14 S. Wanci, W. Shizhu, C. Naizhen, Z. Lu, Z. Wei, Carbon (New York, NY). 1999, 37(2), 356-358.   DOI
15 P. Aelterman, K. Rabaey, H.T. Pham, N. Boon, W. Verstraete, Environ. Sci. Technol., 2006, 40(10), 3388-3394.   DOI
16 M.F. Veloz-Castillo, A. Paredes-Arroyo, G. Vallejo-Espinosa, J.F. Delgado-Jimenez, J.L. Coffer, R. Gonzalez-Rodriguez, M.E. Mendoza, J. Campos-Delgado, M.A. Mendez-Rojas, Can J Chem., 2020, 98(1), 49-55.   DOI
17 J. Huang, Q. Tang, W. Liao, G. Wang, W. Wei, C. Li, Ind. Eng. Chem. Res., 2017, 56(18), 5253-5261.   DOI
18 I. Bavasso, L. Di Palma, E. Petrucci, Chem. Eng. Trans., 2016, 47, 223-228.
19 X. Han, T. Zhao, X. Gao, H. Li, Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2018, 542, 1-7.
20 Z. Jiang, Y. Liu, X. Sun, F. Tian, F. Sun, C. Liang, W. You, C. Han, C. Li, Langmuir. 2003, 19, 731-736.   DOI
21 B. Zhang, Y. Tian, X. Jin, T.Y. Lo, H. Cui, Materials. 2018, 11(11), 2205.   DOI
22 O. Guler, S.H. Guler, V. Selen, M.G. Albayrak, E. Evin, Fuller. Nanotub. Carbon Nanostructures., 2016, 24(2), 123-127.   DOI
23 Z. Wang, R. Qi, J. Wang, S. Qi, Ceram. Int., 2015, 41(10), 13541-13546.   DOI
24 H.-Y. Dai, H.-M. Yang, X. Liu, X. Jian, Z.-H. Liang, ACTA METALL SIN-ENGL., 2016, 29(5), 483-490.   DOI
25 M.Y. Kim, C. Kim, S.K. Ainala, H. Bae, B.-H. Jeon, S. Park, J.R. Kim, Bioelectrochemistry. 2019, 125, 1-7.   DOI
26 T. Huggins, H. Wang, J. Kearns, P. Jenkins, Z.J. Ren, Bioresour. Technol., 2014, 157, 114-119.   DOI
27 X. Xie, M. Ye, L. Hu, N. Liu, J.R. McDonough, W. Chen, H.N. Alshareef, C.S. Criddle, Y. Cui, Energy Environ. Sci., 2012, 5(1), 5265-5270.   DOI