Browse > Article
http://dx.doi.org/10.14478/ace.2022.1051

Surface Modification Technology and Research Trends of Separators for Lithium-Ion Batteries  

Ha, Seongmin (Department of Applied Chemistry and Chemical Engineering, Chungnam National University)
Kim, Daesup (Department of Applied Chemistry and Chemical Engineering, Chungnam National University)
Kwak, Cheol Hwan (Institute of Carbon Fusion Technology (InCFT), Chungnam National University)
Lee, Young-Seak (Department of Applied Chemistry and Chemical Engineering, Chungnam National University)
Publication Information
Applied Chemistry for Engineering / v.33, no.4, 2022 , pp. 343-351 More about this Journal
Abstract
Lithium-ion batteries (LIBs) are considered promising energy storage devices with good performance such as high energy density, slow self-discharge rate, high rate charge capacity, and long battery life. However, the application of these LIBs in the high-energy density electric vehicle and large device industries poses a major safety problem. In order to solve this problem, developing a material having high thermal stability and intrinsic safety is the ultimate solution for improving the stability and electrochemical performance of LIBs. This review introduced a surface modification technology of a separator to overcome the stability problem of a commercial separator, and summarized and summarized the research trends using the modified separator for a lithium-ion battery. Based on this, the future prospects for the separator development by surface modification were discussed.
Keywords
Lithium-ion batteries (LIBs); Separator; Surface modification; Energy storage; Electrochemical performance;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Q. Cheng, W. He, X. Zhang, M. Li, and X. Song, Recent advances in composite membranes modified with inorganic nanoparticles for high-performance lithium ion batteries, RSC Adv., 6, 10250-10265 (2016).   DOI
2 M. F. Lagadec, R. Zahn, and V. Wood, Characterization and performance evaluation of lithium-ion battery separators, Nat. Energy, 4, 16-25 (2018).   DOI
3 X. Yin, Y. Zhang, J.-J. Yuan, B.-K. Zhu, L.-P. Zhu, Y.-Z. Song, and C.-C. Sun, Tannic acid/polyethyleneimine-decorated polypropylene separators for Li-Ion batteries and the role of the interfaces between separator and electrolyte, Electrochim. Acta, 275, 25-31 (2018).   DOI
4 M. Waqas, S. Ali, W. Lv, D. Chen, B. Boateng, and W. He, High-performance PE-BN/PVDF-HFP bilayer separator for lithium-ion batteries, Adv. Mater. Interfaces, 6, 1801330 (2019).   DOI
5 H. Lee, M. Yanilmaz, O. Toprakci, K. Fu, and X. Zhang, A review of recent developments in membrane separators for rechargeable lithium-ion batteries, Energy Environ. Sci., 7, 3857-3886 (2014).   DOI
6 C. J. Orendorff, T. N. Lambert, C. A. Chavez, M. Bencomo, and K. R. Fenton, Polyester separators for lithium-ion cells: Improving thermal stability and abuse tolerance, Adv. Energy Mater., 3, 314-320 (2013).   DOI
7 X. Zhu, X. Jiang, X. Ai, H. Yang, and Y. Cao, A highly thermostable ceramic-grafted microporous polyethylene separator for safer lithium-ion batteries, ACS Appl. Mater. Interfaces, 7, 24119-24126 (2015).   DOI
8 J. Shi, Y. Xia, Z. Yuan, H. Hu, X. Li, H. Zhang, and Z. Liu, Silencing NADPH-cytochrome P450 reductase results in reduced acaricide resistance in Tetranychus cinnabarinus (Boisduval), Sci. Rep., 5, 1-11 (2015).
9 H. Wang and H. Gao, A sandwich-like composite nonwoven separator for Li-ion batteries, Electrochim. Acta, 215, 525-534 (2016).   DOI
10 C. F. Francis, I. L. Kyratzis, and A. S. Best, Lithium-ion battery separators for ionic-liquid electrolytes: A review, Adv. Mater., 32, 1904205 (2020).   DOI
11 M. Waqas, C. Tan, W. Lv, S. Ali, B. Boaten, W. Chen, Z. Wei, J. Chao Feng, J. Ahmed, J. B. Goodenough, and W. He, A highly-efficient composite separator with strong ligand interaction for high-temperature lithium-ion batteries, ChemElectroChem, 5, 2722-2728 (2018).   DOI
12 H. Liu, J. Xu, B. Guo, and X. He, Effect of Al2O3/SiO2 composite ceramic layers on performance of polypropylene separator for lithium-ion batteries, Ceram. Int., 40, 14105-14110 (2014).   DOI
13 W. Chen, L. Shi, H. Zhou, J. Zhu, Z. Wag, X. Mao, M. Chi, L. Sun, and S. Yuan, Water-based organic-inorganic hybrid coating for a high-performance separator, ACS Sustain. Chem. Eng., 4, 3794-3802 (2016).   DOI
14 J. Zhang, L. Yue, Q. Kong, Z. Liu, X. Zhou, C. Zhang, Q. Xu, B. Zhang, G. Ding, B. Qin, Y. Duan, Q. Wang, J. Yao, G. Cui, and L. Chen, Sustainable, heat-resistant and flame-retardant cellulose-based composite separator for high-performance lithium ion battery, Sci. Rep., 4, 1-8 (2014).
15 X. Zuo, J. Wu, X. Ma, X. Deng, J. Cai, Q. Chen, J. Liu, and J. Nan, A poly(vinylidene fluoride)/ethyl cellulose and amino-functionalized nano-SiO2 composite coated separator for 5 V high-voltage lithium-ion batteries with enhanced performance, J. Power Sources., 407, 44-52 (2018).   DOI
16 M. Liu, P. Zhang, L. Gou, Z. Hou, and B. Huang, Enhancement on the thermostability and wettability of lithium-ion batteries separator via surface chemical modification, Mater. Lett., 208, 98-101 (2017).   DOI
17 H. Liu, J. Xu, B. Guo, and X. He, Effect of SiO2 Content on performance of polypropylene separator for lithium-ion batteries, J. Appl. Polym. Sci., 131, 41156 (2014).
18 W. K. Shin and D. W. Kim, High performance ceramic-coated separators prepared with lithium ion-containing SiO2 particles for lithium-ion batteries, J. Power Sources, 226, 54-60 (2013).   DOI
19 Z. Wang, H. Zhu, L. Yang, X. Wang, Z. Liu, and Q. Chen, Plasma modified polypropylene membranes as the lithium-ion battery separators, Plasma Sci. Technol., 18, 424-429 (2016).   DOI
20 S. Y. Jin, J. Manuel, X. Zhao, W. H. Park, and J. H. Ahn, Surface-modified polyethylene separator via oxygen plasma treatment for lithium ion battery, J. Ind. Eng. Chem., 45, 15-21 (2017).   DOI
21 M. Han, D. W. Kim, and Y. C. Kim, Charged polymer-coated separators by atmospheric plasma-induced grafting for lithium-ion batteries, ACS Appl. Mater. Interfaces, 8, 26073-26081 (2016).   DOI
22 H. Jeon, S. Y. Jin, W. H. Park, H. Lee, H. T. Kim, M. H. Ryou, and Y. Lee, Plasma-assisted water-based Al2O3 ceramic coating for polyethylene-based microporous separators for lithium metal secondary batteries, Electrochim. Acta, 212, 649-656 (2016)   DOI
23 H. S. Jeong and S. Y. Lee, Closely packed SiO2 nanoparticles/ poly(vinylidene fluoride-hexafluoropropylene) layers-coated polyethylene separators for lithium-ion batteries, J. Power Sources, 196, 6716-6722 (2011).   DOI
24 C. Shi, P. Zhang, L. Chen, P. Yang, and J. Zhao, Effect of a thin ceramic-coating layer on thermal and electrochemical properties of polyethylene separator for lithium-ion batteries, J. Power Sources, 270, 547-553 (2014).   DOI
25 Z. Wang, F. Guo, C. Chen, L. Shi, S. Yuan, L. Sun, and J. Zhu, Self-assembly of Pei/SiO2 on polyethylene separators for li-ion batteries with enhanced rate capability, ACS Appl. Mater. Interfaces, 7, 3314-3322 (2015).   DOI
26 J. Hao, G. Lei, Z. Li, L. Wu, Q. Xiao, and L. Wang, A novel polyethylene terephthalate nonwoven separator based on electrospinning technique for lithium ion battery, J. Membr. Sci., 428, 11-16 (2013).   DOI
27 E. Shekarian, M. R. J. Nasr, T. Mohammadi, O. Bakhtiari, and M. Javanbakht, Enhanced wettability and electrolyte uptake of coated commercial polypropylene separators with inorganic nanopowders for application in lithium-ion battery, J. Nanostruct., 9, 736-750 (2019).
28 Y. Xiang, W, Zhu, W. Qiu, W. Guo, J. Lei, D. Liu, D. Qu, Z. Xie, H. Tang, and J. Li, SnO2 functionalized polyethylene separator with enhanced thermal stability for high performance lithium ion battery, Chem. Eur. J., 3, 911-916 (2018).
29 Y. Xiao, A. Fu, Y. Zou, L. Huang, H. Wang, Y. Su, and J. Zheng, High safety lithium-ion battery enabled by a thermal-induced shutdown separator, Chem. Eng. J., 438, 135550 (2022).   DOI
30 H. Lee, H. Jeon, S. H. Gong, M. H. Ryou, and Y. M. Lee, A facile method to enhance the uniformity and adhesion properties of water-based ceramic coating layers on hydrophobic polyethylene separators, Appl. Surf. Sci., 427, 139-146 (2018).   DOI
31 E. J. Song, M.-J. Kim, J.-I. Han, Y. J. Choi, and Y.-S. Lee, Gas adsorption characteristics of by interaction between oxygen functional groups introduced on activated carbon fibers and acetic acid molecules, Appl. Chem. Eng., 30, 160-166 (2019)   DOI
32 R. Luo, C. Wang, Z. Zhang, W. Lv, Z. Wei, Y. Zhang, X. Luo, and W. He, Three-dimensional nanoporous polyethylene-reinforced PVDF-HFP separator enabled by dual-solvent hierarchical gas liberation for ultrahigh-rate lithium ion batteries, ACS Appl. Energy Mater., 1, 921-927 (2018).   DOI
33 Z. Zhang, W. Yuan, and L. Li, Enhanced wettability and thermal stability of nano-SiO2/poly(vinyl alcohol)-coated polypropylene composite separators for lithium-ion batteries, Particuology, 37, 91-98 (2018).   DOI
34 A. Gupta and S. Sivaram, Separator membranes for lithium-sulfur batteries: design principles, structure, and performance, Energy Technol., 7, 1800819 (2019).   DOI
35 R. Lee, C. Lim, M.-J. Kim, and Y.-S. Lee, Acetic acid gas adsorption characteristics of activated carbon fiber by plasma and direct gas fluorination, Appl. Chem. Eng., 32, 55-60 (2021).   DOI
36 J. Fang, A. Kelarakis, Y. W. Lin, C. Y. Kang, M. H. Yang, C. L. Cheng, Y. Wang, E. P. Giannelis, and L. D. Tsai, Nanoparticlecoated separators for lithium-ion batteries with advanced electrochemical performance, Phys. Chem. Chem. Phys., 13, 14457-14461 (2011).   DOI
37 X. Li, J. He, D. Wu, M. Zhang, J. Meng, and P. Ni, Development of plasma-treated polypropylene nonwoven-based composites for high-performance lithium-ion battery separators, Electrochim. Acta, 167, 396-403 (2015).   DOI
38 N. Sabetzadeh, C. Falamaki, R. Riahifar, M. S. Yaghmaee, and B. Raissi, Plasma treatment of polypropylene membranes coated with zeolite/organic binder layers: Assessment of separator performance in lithium-ion batteries, Solid State Ion., 363, 115589 (2021).   DOI
39 C. Li, H.-L. Li, C.-H. Li, Y.-S. Liu, Y.-C. Sung, and C. Huang, Effects of low-pressure nitrogen plasma treatment on the surface properties and electrochemical performance of the polyethylene separator used lithium-ion batteries, Jpn. J. Appl. Phys., 57, 01AB03-1 (2018).   DOI
40 R. S. Baldwin, M. Guzik, and M. Shierski, Properties and performance attributes of novel Co-extruded polyolefin battery separator materials part 1: Mechanical properties, NASA Center for AeroSpace Information, 216979, 1-14 (2009).
41 M. Alireza, Z. Seyedeh, S. Mohammad, and M. Sharifzadeh, Mechanical engineering of solid oxide fuel cell systems: Geometric design, mechanical configuration, and thermal analysis. In: M. Sharifzadeh (ed.). Design and Operation of Solid Oxide Fuel Cells in Design and Operation of Solid Oxide Fuel Cells, 85-130, Academic Press, Cambridge, USA (2020).
42 L. F. Feng, J. L. Shi, J. H. Jiang, H. Li, B. K. Zhu, and L. P. Zhu, Improving the wettability and thermal resistance of polypropylene separators with a thin inorganic-organic hybrid layer stabilized by polydopamine for lithium ion batteries, RSC Adv., 4, 22501-22508 (2014).   DOI
43 S. Hu, S. Lin, Y. Tu, J. Hu, Y. Wu, G. Liu, F. Li, F. Yu, and T. Jiang, Novel aramid nanofiber-coated polypropylene separators for lithium ion batteries, J. Mater. Chem. A, 4, 3513-3526 (2016).   DOI
44 G. Feng, Z. Li, L. Mi, J. Zheng, X. Feng, and W. Chen, Polypropylene/hydrophobic-silica-aerogel-composite separator induced enhanced safety and low polarization for lithium-ion batteries, J. Power Sources., 376, 177-183 (2018).   DOI
45 X. Niu, J. Li, G. Song, Y. Li and T. He, Evidence of high temperature stable performance of polyether ether ketone (PEEK) separator with sponge-structured in lithium-ion battery, Energy Mater., 57, 7042-7055 (2022).
46 R. S. Juang, C. H. Liang, W. C. Ma, C. Y. Tsai, and C. Huang, Low-pressure ethane/nitrogen gas mixture plasma surface modification effect on the wetting and electrochemical performance of polymeric separator for lithium-ion batteries, J. Taiwan Inst. Chem. Eng., 45, 3046-3051 (2014).   DOI