• Title/Summary/Keyword: Electrochemical Kinetics

Search Result 136, Processing Time 0.023 seconds

A Study on the Pit Growth Kinetics of Inconel Alloy 600 in $Cl^--Ion$ Containing Solution at Temperatures $25^{\circ}\;to\;150^{\circ}C$ by Analysis of Current Transients in View of Stochastic Theory (확률 이론의 관점에서 $25^{\circ}$ 에서 $150^{\circ}C$ 사이의 염화이온 함유수용액에서 인코넬 합금 600에서 구한 전류추이 곡선의 해석에 의한 핏트의 성장 속도론에 대한 연구)

  • 박진주;변수일
    • 한국전기화학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.44-44
    • /
    • 2003
  • PDF

Enhanced Activity for Oxygen Evolution Reaction of Nanoporous IrNi thin film Formed by Electrochemical Selective Etching Process

  • Park, Shin-Ae;Shim, Kyubin;Kim, Kyu-Su;Moon, Young Hoon;Kim, Yong-Tae
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.402-407
    • /
    • 2019
  • Water electrolysis is known as the most sustainable and clean technology to produce hydrogen gas, however, a serious drawback to commercialize this technology is due to the slow kinetics in oxygen evolution reaction (OER). Thus, we report on the nanoporous IrNi thin film that reveals a markedly enhanced OER activity, which is attained through a selective etching of Os from the IrNiOs alloy thin film. Interestingly, electrochemical selective etching of Os leads to the formation of 3-dimensionally interconnected nanoporous structure providing a high electrochemical surface area (ECSA, 80.8 ㎠), which is 90 fold higher than a bulk Ir surface (0.9 ㎠). The overpotential at the nanoporous IrNi electrode is markedly lowered to be 289 mV at 10 mA cm-2, compared with bulk Ir (375 mV at 10 mA cm-2). The nanoporous IrNi prepared through the selective de-alloying of Os is promising as the anode material for a water electrolyzer.

Estimation of Energetic and Charge Transfer Properties of Iridium(III) Bis(2-phenylpyridinato-N,C2')acetylacetonate by Electrochemical Methods

  • Cha, Joeun;Ko, Eun-Song;Shin, Ik-Soo
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.96-100
    • /
    • 2017
  • Iridium(III) bis(2-phenylpyridinato-$N,C^{2^{\prime}}$)acetylacetonate ($(ppy)_2Ir(acac)$), a green dopant used in organic light-emitting devices (OLEDs), was subjected to electrochemical characterization to estimate its formal oxidation potential ($E^{o^{\prime}}$), HOMO energy level ($E_{HOMO}$), electron transfer rate constant ($k^{o^{\prime}}$), and diffusion coefficient ($D_o$). The employed combination of voltammetric methods, i.e., cyclic voltammetry (CV), chronocoulometry (CC), and the Nicholson method, provided meaningful insights into the electron transfer kinetics of $(ppy)_2Ir(acac)$, allowing the determination of $k^{o^{\prime}}$ and $D_o$. The quasi-reversible oxidation of $(ppy)_2Ir(acac)$ furnished information on $E^{o^{\prime}}$ and $E_{HOMO}$, allowing the latter parameter to be easily estimated by electrochemical methods without relying on expensive and complex ultraviolet photoemission spectroscopic (UPS) measurements.

Corrosion in Oil well Stimulation Processes Caused by Different Chelating Agents Based on EDTA Compounds

  • Calderon, J.A.;Vasquez, F.A.;Arbelaez, L.;Carreno, J.A.
    • Corrosion Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.59-63
    • /
    • 2017
  • Chelating solutions can be damaged by strong acids during oil production. To design effective corrosion inhibitors and other alternatives for corrosion control, it is important to understand not only the behavior of the system under operating condition but also the kinetics of electrochemical reactions during the corrosion process. In this study, the electrochemical behaviors of P-110 steel in aqueous fluids based on ethylenediaminetetraacetic acid (EDTA) compounds under various temperatures and hydrodynamic regime conditions were assessed. Electrochemical measurements were conducted using rotating disc electrodes manufactured. Electrolytes were prepared using aqueous compounds of EDTA like diammonium salt, disodium salt, and tetrasodium salt. Potentiodynamic polarization, electrochemical impedance, and mass loss tests were performed in order to assess the corrosion kinetic in electrolytes. Hydrodynamic effects were observed only in the cathodic polarization curve. This proves that hydrodynamic regime plays an important role in the corrosion of steel mainly in disodium and diammonium EDTA solutions. Two cathodic reactions controlled the corrosion process. However, oxygen level and pH of the electrolyte played the most important role in metal corrosion. Corrosion rates in those fluids were decreased drastically when oxygen concentration was reduced.

The Effect of Metal-Oxide Coating on the Electrochemical Properties in Thin-Film $LiCoO_2$ Cathodes (금속산화물 코팅을 통한 박막 $LiCoO_2$양극의 전기화학적 특성 향상)

  • 김혜민;김병수;김용정;조재필;박병우
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.124-124
    • /
    • 2003
  • To improve the electrochemical properties of thin-film LiCoO$_2$ cathodes, metal oxides were coated on the LiCoO$_2$ thin films using f sputtering. Galvanostatic charge-discharge experiments showed the enhanced cycling behaviors in the metal-oxide coated LiCoO$_2$ thin films than the uncoated ones. These results are because the metal-oxide coating layer suppresses the degradation of Li-diffusion kinetics during cycling, which is related to the protection of cathode surface from the electrolytes [l-3]. The variation in the metal-oxide coating thickness ranging from 10 to 300 nm did not affect the electrochemical properties. Changes of lattice constants in the coated and bare LiCoO$_2$ thin films at different charged states will also be discussed.

  • PDF

결함 제어를 통한 금속산화물 소재의 전기화학 특성 제어

  • Jeong, Hyeong-Mo;Sin, Won-Ho
    • Ceramist
    • /
    • v.21 no.2
    • /
    • pp.49-58
    • /
    • 2018
  • Metal oxide based materials have been widely used to fields of electrochemical applications. Recently, various type of defects from microstructures of metal oxides and their nanocomposites have been raised as the important material design factors for realizing highly improved electrochemical properties. Previous experimental and theoretical works have suggested that controlling the reaction activity and kinetics of the key electrochemical reactions by activated interfaces originating from the defect sites can play an important role in achieving the robust energy storage and conversion. Therefore, this paper focuses on the role of defect-controlled metal oxide materials such as doping, edge-sites, grain boundaries and nano-sized pores for the high performances in energy storage devices and electrocatalysts. The research approaches demonstrated here could offer a possible route to obtain noble ideas for designing the metal oxide materials for the energy storage and conversion applications.

A Study on the Electroformed Thickness Estimate By Current Density Distribution Use Finite Elements Analysis (유한요소해석을 이용한 전류밀도 분포에 의한 전주두께 예측에 관한 연구)

  • Kang D. C.;Kim H. Y.;Jeon B. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.449-453
    • /
    • 2005
  • Electrochemical systems find widespread technical application. Industrial electrolytic process include electroplating, electroforming, and electropolishing. Electroforming and electroplating is widely used in the manufacture of metal parts. This paper based on the basic equations of electrics and electrochemical kinetics, was employed for a theoretical explanation of the current density distribution on electroforming process. We calculated current density distribution and potential distribution on cathode. Also, calculated current density distribution of vertical direction. It was shown that current density is related with distance of between anode and cathode and mass transfer process. And make an experiment on its relation and electroformed thickness. It shows that it is useful method using FEM with multi-physics to estimate electroformed thickness.

  • PDF

Effect of Zinc Addition in Filler Metal on Sacrificial Anode Cathodic Protection of Fin-Tube Aluminum Heat Exchanger

  • Yoon-Sik So;Eun-Ha Park;Jung-Gu Kim
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.349-360
    • /
    • 2023
  • This study investigated the tri-metallic galvanic coupling of different metals in the tubes, fillers, and fins of a heat exchanger. The goal was to prevent corrosion of the tubes using the fin as a sacrificial anode while ensuring that the filler metal has a more noble potential than the fin, to avoid detachment. The metals were arranged in descending order of corrosion potential, with the noblest potential assigned to the tube, followed by the filler metal and the fin. To address a reduction in protection current of the fin, the filler metal was modified by adding Zn to decrease its corrosion potential. However, increasing the Zn content of filler metal also increases its corrosion current. The study examined three different filler metals, considering their corrosion potential, and kinetics. The results suggest that a filler metal with 1.5 wt.% Zn addition is optimal for providing cathodic protection to the tube while reducing the reaction rate of the sacrificial anode.

Factors Affecting Nucleation and Growth of Chromium Electrodeposited from Cr3+ Electrolytes Based on Deep Eutectic Solvents

  • El-Hallag, Ibrahim S.;Moharram, Youssef I.;Darweesh, Mona A.;Tartour, Ahmed R.
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.291-309
    • /
    • 2020
  • Chromium was electrodeposited from deep eutectic solvents-based Cr3+ electrolytes on HB-pencil graphite electrode. Factors influencing the electrochemical behavior and the processes of Cr nucleation and growth were explored using cyclic voltammetry and chronoamperometry techniques, respectively. Cr3+ reduction was found to occur through an irreversible diffusion-controlled step followed by another irreversible one of impure diffusional behaviour. The reduction behavior was found to be greatly affected by Cr3+ concentration, temperature, and type of hydrogen bond donor used in deep eutectic solvents (DESs) preparation. A more comprehensive model was suggested and successfully applied to extract a consistent data relevant to Cr nucleation kinetics from the experimental current density transients. The potential, the temperature, and the hydrogen bond donor type were estimated to be critical factors controlling Cr nucleation. The nucleation and growth processes of Cr from either choline chloride/ethylene glycol (EG-DES) or choline chloride/urea (U-DES) deep eutectic solvents were evaluated at 70℃ to be three-dimensional (3D) instantaneous and diffusion-controlled, respectively. However, the kinetics of Cr nucleation from EG-DES was found to be faster than that from U-DES. Cr nucleation was tending to be instantaneous at higher temperature, potential, and Cr3+ concentration. Cr nuclei electrodeposited from EG-DES were characterized at different conditions using scanning electron microscope (SEM). SEM images show that high number density of fine spherical nuclei of almost same sizes was nearly obtained at higher temperature and more negative potential. Energy dispersive spectroscopy (EDS) analysis confirms that Cr deposits were obtained.

Electrochemical Behavior of Nanostructured Fe-Pd Alloy During Electrodeposition on Different Substrates

  • Rezaei, Milad;Haghshenas, Davoud F.;Ghorbani, Mohammad;Dolati, Abolghasem
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.202-211
    • /
    • 2018
  • In this work, Fe-Pd alloy films have been electrodeposited on different substrates using an electrolyte containing $[Pd(NH_3)_4]^{2+}$ (0.02 M) and $[Fe-Citrate]^{2+}$ (0.2 M). The influences of substrate and overpotential on chemical composition, nucleation and growth kinetics as well as the electrodeposited films morphology have been investigated using energy dispersive X-ray spectroscopy (EDS), current-time transients, scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD) patterns. In all substrates - brass, copper and sputtered fluorine doped tin oxide on glass (FTO/glass) - Fe content of the electrodeposited alloys increases by increasing the overpotential. Also the cathodic current efficiency is low due to high rate of $H_2$ co-reduction. Regarding the chronoamperometry current-time transients, it has been demonstrated that the nucleation mechanism is instantaneous with a typical three dimensional (3D) diffusion-controlled growth in the case of brass and copper substrates; while for FTO, the growth mode changes to 3D progressive. At a constant overpotential, the calculated number of active nucleation sites for metallic substrates is much higher than that of FTO/glass; however by increasing the overpotential, the number of active nucleation sites increases. The SEM micrographs as well as the XRD patterns reveal the formation of Fe-Pd alloy thin films with nanostructure arrangement and ultra-fine grains.