Browse > Article
http://dx.doi.org/10.5229/JECST.2018.9.3.202

Electrochemical Behavior of Nanostructured Fe-Pd Alloy During Electrodeposition on Different Substrates  

Rezaei, Milad (Department of Mining & Metallurgical Engineering, Amirkabir University of Technology)
Haghshenas, Davoud F. (Department of Mining & Metallurgical Engineering, Amirkabir University of Technology)
Ghorbani, Mohammad (Department of Materials Science and Engineering, Sharif University of Technology)
Dolati, Abolghasem (Department of Materials Science and Engineering, Sharif University of Technology)
Publication Information
Journal of Electrochemical Science and Technology / v.9, no.3, 2018 , pp. 202-211 More about this Journal
Abstract
In this work, Fe-Pd alloy films have been electrodeposited on different substrates using an electrolyte containing $[Pd(NH_3)_4]^{2+}$ (0.02 M) and $[Fe-Citrate]^{2+}$ (0.2 M). The influences of substrate and overpotential on chemical composition, nucleation and growth kinetics as well as the electrodeposited films morphology have been investigated using energy dispersive X-ray spectroscopy (EDS), current-time transients, scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD) patterns. In all substrates - brass, copper and sputtered fluorine doped tin oxide on glass (FTO/glass) - Fe content of the electrodeposited alloys increases by increasing the overpotential. Also the cathodic current efficiency is low due to high rate of $H_2$ co-reduction. Regarding the chronoamperometry current-time transients, it has been demonstrated that the nucleation mechanism is instantaneous with a typical three dimensional (3D) diffusion-controlled growth in the case of brass and copper substrates; while for FTO, the growth mode changes to 3D progressive. At a constant overpotential, the calculated number of active nucleation sites for metallic substrates is much higher than that of FTO/glass; however by increasing the overpotential, the number of active nucleation sites increases. The SEM micrographs as well as the XRD patterns reveal the formation of Fe-Pd alloy thin films with nanostructure arrangement and ultra-fine grains.
Keywords
Fe-Pd alloy; Electrodeposition; Kinetics; Nucleation; Growth;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S.P. Gou, I.W. Sun, Electrochim. Acta, 2008, 53(5), 2538-2544.   DOI
2 E. Nouri, A. Dolati, Mater. Res. Bull., 2007, 42(9), 1769-1776.   DOI
3 A.N. Correia, M.X. Facanha, P. de Lima-Neto, Surf. Coat. Tech., 2007, 201(16-17), 7216-7221.   DOI
4 A. Dolati, M. Sababi, E. Nouri, M. Ghorbani, Mater. Chem. Phys., 2007, 102(2-3), 118-124.   DOI
5 S. Basavanna, Y.A. Naik, J. Appl. Electrochem., 2009, 39(120), 1975-1982.   DOI
6 I. Petersson, E. Ahlberg, J. Electroanal. Chem., 2000, 485(2), 166-177.   DOI
7 F.R. Bento, L.H. Mascaro, Surf. Coat. Tech., 2006, 201, 1752-1756.   DOI
8 A.N. Correia, R.C.B. de Oliveira. P. de Lima-Neto, J. Braz. Chem. Soc., 2006, 17(1), 90-97.   DOI
9 Z.N. Yang, Z. Zhang, J.Q. Zhang, Surf. Coat. Tech., 2006, 200(16-17), 4810-4815.   DOI
10 M. Jayakumar, K.A. Venkatesan, T.G. Srinivasan, P.R. Vasudeva Rao, Electrochim. Acta, 2009, 54(26), 6747-6755.   DOI
11 H.J. Yun, S.M.S.I. Dulal, C.B. Shin, C.K. Kim, Electrochim. Acta, 2008, 54(2), 370-375.   DOI
12 S.M.S.I. Dulal, H.J. Yun, C.B. Shin, C.K. Kim, Electrochim. Acta, 2007, 53(2), 934-943.   DOI
13 I. Tabakovic, J. Qiu, S. Riemer, M. Sun, V. Vas'ko, M. Kief, Electrochim. Acta, 2008, 53(5), 2483-2493.   DOI
14 M.R. Khelladi, L. Mentar, M. Boubatra, A. Azizi, A. Kahoul, Mater. Chem. Phys., 2010, 122(2-3), 449-453.   DOI
15 E. Gomez, E. Guaus, F. Sanz, E. Valles, J. Electroanal. Chem., 1999, 465(1), 63-71.   DOI
16 W. Plieth, Electrochemistry for Materials Science, Elsevier, Amsterdam, 2008.
17 F.M. Takata, P.T.A. Sumodjo, Electrochim. Acta, 2007, 52(20), 6089-6096.   DOI
18 B.D. Cullity, Elements of X-ray Diffraction, Second Ed., Addison-Wesley Pub. Co., Reading, MA, 1978.
19 J.R. Ares, A. Pascual, I.J. Ferrer, C. Sanchez, Thin Solid Films, 2005, 480, 477-481.
20 A. Afshar, A.G. Dolati, M. Ghorbani, Mater. Chem. Phys., 2003, 77(2), 352-358.   DOI
21 Y. Ito, A. Miyazaki, S. Valiyaveettil, T. Enoki, J. Phys. Chem. C, 2010, 114(27), 11699-11702.   DOI
22 H. Liu, F. Wang, Y. Zhao, J. Liu, K.C. Park, M. Endo, J. Electroanal. Chem., 2009, 633(1), 15-18.   DOI
23 B. Jeon, S. Yoon, B.Y. Yoo, Electrochim. Acta, 2010, 56(1), 401-405.   DOI
24 N. Tasaltin, S. Ozturk, N. Kilinc, H. Yuzer, Z.Z. Ozturk, J. Alloys Compd., 2011, 509(9), 3894-3898.   DOI
25 F. Wang, S. Doi, K. Hosoiri, H. Yoshida, T. Kuzushima, M. Sasadaira, T. Watanabe, Electrochim. Acta, 2006, 51(20), 4250-4254.   DOI
26 S.A. Wilson, et al., Mater. Sci. Eng. R, 2007, 56(1-6), 1-129.   DOI
27 T. Edler, S. Hamann, A. Ludwig, S.G. Mayr, Scr. Mater., 2011, 64(1), 89-92.   DOI
28 S. Hamann, M.E. Gruner, S. Irsen, J. Buschbeck, C. Bechtold, I. Kock, S.G. Mayr, A. Savan, S. Thienhaus, E. Quandt, S. Fahler, P. Entel, A. Ludwig, Acta Mater., 2010, 58(18), 5949-5961.   DOI
29 V. Haehnel, C. Mickel, S. Fahler, L. Schultz, H. Schlorb, J. Phys. Chem. C, 2010, 114(45), 19278-19283.   DOI
30 V. Haehnel, S. Fahler, L. Schultz, H. Schlorb, Electrochem. Commun., 2010, 12(8), 1116-1119.   DOI
31 S. Inoue, K. Inoue, K. Koterazawa, K. Mizuuchi, Mater. Sci. Eng. A, 2003, 339(120), 29-34.   DOI
32 J. Buschbeck I. Lindemann, L. Schultz, S. Fahler, Phys. Rev. B, 2007, 76(20), 205421.   DOI
33 H. Shima, K. Oikawa, A. Fujita, K. Fukamichi, K. Ishida, J. Magn. Magn. Mater., 2004, 272, 2173-2174.
34 M. Rezaei, M. Ghorbani, A. Dolati, Electrochim. Acta, 2010, 56(1), 483-490.   DOI
35 F.M. Takata, G. Pattanaik, W.A. Soffa, P.T.A. Sumodjo, G. Zangari, Electrochem. Commun., 2008, 10(4), 568-571.   DOI
36 S. Doi, F. Wang, K. Hosoiri, T. Watanabe, Mater. Trans., 2003, 44(4), 649-652.   DOI
37 K.J. Bryden, J.Y. Ying, J. Electrochem. Soc, 1998, 145(10), 3339-3346.   DOI
38 S.C. Hernandez, B.Y. Yoo, E. Stefanescu, S. Khizroev, N.V. Myung, Electrochim. Acta, 2008, 53(18), 5621-5627.   DOI
39 D. Pecko, K.Z. Rozman, P.J. McGuiness, B. Pihlar, S. Kobe, J. Appl. Phys., 2010, 107(9), 09A712.   DOI
40 K.Z. Rozman, D. Pecko, L. Suhodolcan, P.J. McGuiness, S. Kobe, J. Alloys Compd., 2011, 509(2), 551-555.   DOI
41 M.A. Meyers, A. Mishra, D.J. Benson, Prog. Mater. Sci., 2006, 51(4), 427-556.   DOI
42 K. Sekiguchi, M. Shimizu, E. Saitoh, H. Miyajima, J. Magn. Magn. Mater., 2004, 282, 143-146.   DOI
43 I. Bakonyi, L. Peter, Prog. Mater. Sci., 2010, 55(3), 107-245.   DOI
44 M. Rezaei, Synthesis and characterization of Fe-Pd shape memory thin films by electrodeposition, Master Thesis, Department of Materials Science and Engineering, Sharif University of Technology, Iran, 2010.
45 M. Ghorbani, A. Iraji zad, A. Dolati, R. Ghasempour, J. Alloys Compd., 2005, 386(1-2), 43-46.   DOI
46 E. Gomez, A. Labarta, A. Llorente, E. Valles, J. Electroanal. Chem., 2001, 517(1-2), 63-68.   DOI
47 F. Xiao, C. Hangarter, B. Yoo, Y. Rheem, K. Lee, N.V. Myung, Electrochim. Acta, 2008, 53(28), 8103-8117.   DOI
48 A.J. Bard, R. Parsons, J. Jordan, Standard Potentials in Aqueous Solutions, Marcel Dekker, New York, 1985.
49 R.N. Goldberg, L.H. Hepler, Chem. Rev., 1968, 68(2), 229-252.   DOI
50 E.M. Martell, R.M. Smith, Critical Stabilities Constants, Plenum Press, New York, 1989.
51 M. Rezaei S.H. Tabaian, D.F. Haghshenas, Electrochim. Acta, 2012, 59, 360-366.   DOI
52 M. Rezaei S.H. Tabaian, D.F. Haghshenas, J. Electroanal. Chem., 2012, 687, 95-101.   DOI
53 M. Rezaei S.H. Tabaian, D.F. Haghshenas, Electrochim. Acta, 2013, 87, 381-387.   DOI
54 M. Rezaei S.H. Tabaian, D.F. Haghshenas, J. Mater. Chem. A, 2014, 2(13), 4588-4597.   DOI
55 A.E. Alvarez, D.R. Salinas, Electrochim. Acta, 2010, 55(11), 3714-3720.   DOI
56 A. Brenner, Electrodeposition of Alloys, Vol. 1 and 2, Academic Press, New York and Landon, 1963.
57 D. Landolt, Electrochim. Acta, 1994, 39(8-9), 1075-1090.   DOI
58 A.G. Dolati, M. Ghorbani, A. Afshar, Surf. Coat. Tech., 2003, 166, 105-110.   DOI
59 A.E. Alvarez, D.R. Salinas, J. Electroanal. Chem., 2004, 566(2), 393-400.   DOI
60 A. Milchev, Electrocrystallization: Fundamentals of Nucleation and Growth, Kluwer Academic Publishers, Boston, 2002.
61 A. Dolati, M. Ghorbani, M.R. Ahmadi, J. Electroanal. Chem., 2005, 577(1), 1-8.   DOI
62 L. Soleimany, A. Dolati, M. Ghorbani, J. Electroanal. Chem., 2010, 645(1), 28-34.   DOI
63 L. Heerman, A. Tarallo, J. Electroanal. Chem., 1999, 470(1), 70-76.   DOI
64 B. Scharifker, G. Hills, Electrochim. Acta, 1983, 28(7), 879-889.   DOI
65 B.R. Scharifker, J. Mostany, Electroanal. Chem., 1984, 177(1-2), 13-23.   DOI
66 L. Heerman, A. Tarallo, J. Electroanal. Chem., 1998, 451(1-2), 101-109.   DOI
67 Z. Zhang, D.P. Barkey, J. Electrochem. Soc., 2007, 154(10), D550-D556.   DOI
68 A. Sahari, A. Azizi, G. Schmerber, M. Abes, J.P. Bucher, A. Dinia, Catal. Today, 2006, 113(3-4), 257-262.   DOI
69 C. Han, Q. Liu, D.G. Ivey, Electrochim. Acta, 2009, 54(12), 3419-3427.   DOI
70 A.S. Taguchi, F.R. Bento, L.H. Mascaro, J. Braz. Chem. Soc., 2008, 19(4), 727-733.   DOI