Browse > Article
http://dx.doi.org/10.33961/jecst.2020.00731

Factors Affecting Nucleation and Growth of Chromium Electrodeposited from Cr3+ Electrolytes Based on Deep Eutectic Solvents  

El-Hallag, Ibrahim S. (Analytical and Electrochemistry Research Unit, Chemistry Department, Faculty of Science, Tanta University)
Moharram, Youssef I. (Analytical and Electrochemistry Research Unit, Chemistry Department, Faculty of Science, Tanta University)
Darweesh, Mona A. (Faculty of Engineering, Tanta University)
Tartour, Ahmed R. (Electroplating Department, Factory 100, Abu-Zaabal Company for Engineering Industries)
Publication Information
Journal of Electrochemical Science and Technology / v.11, no.3, 2020 , pp. 291-309 More about this Journal
Abstract
Chromium was electrodeposited from deep eutectic solvents-based Cr3+ electrolytes on HB-pencil graphite electrode. Factors influencing the electrochemical behavior and the processes of Cr nucleation and growth were explored using cyclic voltammetry and chronoamperometry techniques, respectively. Cr3+ reduction was found to occur through an irreversible diffusion-controlled step followed by another irreversible one of impure diffusional behaviour. The reduction behavior was found to be greatly affected by Cr3+ concentration, temperature, and type of hydrogen bond donor used in deep eutectic solvents (DESs) preparation. A more comprehensive model was suggested and successfully applied to extract a consistent data relevant to Cr nucleation kinetics from the experimental current density transients. The potential, the temperature, and the hydrogen bond donor type were estimated to be critical factors controlling Cr nucleation. The nucleation and growth processes of Cr from either choline chloride/ethylene glycol (EG-DES) or choline chloride/urea (U-DES) deep eutectic solvents were evaluated at 70℃ to be three-dimensional (3D) instantaneous and diffusion-controlled, respectively. However, the kinetics of Cr nucleation from EG-DES was found to be faster than that from U-DES. Cr nucleation was tending to be instantaneous at higher temperature, potential, and Cr3+ concentration. Cr nuclei electrodeposited from EG-DES were characterized at different conditions using scanning electron microscope (SEM). SEM images show that high number density of fine spherical nuclei of almost same sizes was nearly obtained at higher temperature and more negative potential. Energy dispersive spectroscopy (EDS) analysis confirms that Cr deposits were obtained.
Keywords
Chromium; Electrodeposition; Nucleation; Deep eutectic solvent; Chronoamperometry;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. Cotell, J. Sprague and J.r. F. A. Smidt, ASM Hand Book (Vol. 5), ASM International, USA, 1994.
2 M. Schlesinger and M. Paunovic, Modern Electroplating, John Wiley & Sons, New Jersey, 2010.
3 R.E. Tucker, Metal Finishing, Elsevier, New York, 2011.
4 T. Norseth, Eviron. Health Perspect., 1981, 40, 121-130.   DOI
5 V.S. Protsenko and F.I. Danilov, Clean. Technol. Environ. Policy., 2014, 16, 1201-1206.   DOI
6 T. Hall, E. Taylor and M. Inman, Plating Surf. Finish., 2010, 2(9), 675-686.
7 A. Liang, Q. Liu and B. Zhang, Mater. Lett., 2014, 119, 131-134.   DOI
8 A. Liang, L. Ni and Q. Liu, Surf. Coat. Technol., 2013, 218, 23-29.   DOI
9 D. Del Pianta, J. Frayret and C. Gleyzes, Electrochimica Acta., 2018, 284, 234-241.   DOI
10 R. Giovanardi and G. Orlando, Surf. Coat. Technol., 2011, 205(15), 3947-3955.   DOI
11 I. Drela, J. Szynkarczuk and J. Kubicki, J. Appl. Electrochem., 1989, 19(6), 933-936.   DOI
12 J. Mcdougall, M. El-Sharif and S. Ma, J. Appl. Electrochem., 1998, 28(9), 929-934.   DOI
13 J.H.O.J. Wijenberg, M. Steegh and M.P. Aarnts, Electrochimica Acta, 2015, 173, 819-826.   DOI
14 W. Simka, D. Puszczyk and G. Nawrat, Electrochimica Acta, 2009, 54(23), 5307-5319.   DOI
15 W. Liu, G. Liu, X. Saijun and J. Zhang, Int. J. Electrochem. Sci., 2017, 12, 1589-1599.
16 G. Saravanan and S. Mohan, J. Appl. Electrochem., 2009, 39(8), 1393-1397.   DOI
17 S. Survilienė, S. Eugenio and R. Vilar, J. Appl. Electrochem., 2011, 41(1), 107-114.   DOI
18 F.I. Danilov, V.S. Protsenko and V.O. Gordiienko, Appl. Surf. Sci., 2011, 257(18), 8048-8053.   DOI
19 A.P. Abbott and K.J. McKenzie, Phys. Chem. Chem. Phys., 2006, 8(37), 4265-4279.   DOI
20 F. Liu, Y. Deng and X. Han, J. Alloys Compd., 2016, 654, 163-170.   DOI
21 V.S. Protsenko, L.S. Bobrova and D.E. Golubtsov, Russ. J. Appl. Chem., 2018, 91(7), 1106-1111.   DOI
22 E.L. Smith, A.P. Abbott and K.S. Ryder, Chem. Rev., 2014, 114(21), 11060-111082.   DOI
23 A.P. Abbott, G.Capper, and D.L. Davies, Chem-Eur. J., 2004, 10(15), p. 3769-3774.   DOI
24 A.P. Abbott, A.A. Al-Barzinjyand P.D. Abbott, Phys. Chem. Chem. Phys., 2014, 16(19), 9047-9055.   DOI
25 M.R. Majidi, K. Asadpour-Zeynali and B. Hafezi, Electrochim-ica Acta, 2009 , 54(3), 1119-1126.   DOI
26 V. Protsenko, L. Bobrova and F. Danilov, Anti-Corros. Method. M., 2018, 65(5), 499-505.   DOI
27 I. Mejia-Caballero, J. Aldana-Gonzalez and T.L. Manh, J. Electrochem Soc., 2018, 165(9), D393-401.   DOI
28 I.G. David, D.E. Popa and M. Buleandra, J. Anal. Methods Chem., 2017, 1-22.
29 M. Rezaei, S.H. Tabaian and D.F. Haghshenas, Electrochimica Acta, 2012, 59, 360-366.   DOI
30 E.B. Budevski, G.T. Staikovand W.J. Lorenz, Electrochemical Phase Formation and Growth: An Introduction to the Initial Stages of Metal Deposition, VCH, New York and Weinheim, 1996.
31 E. Laviron, J. Electroanal. Chem., 1979, 101, 19-28.   DOI
32 B. Scharifker and G. Hills, Electrochimica Acta, 1983, 28(7), 879-889.   DOI
33 M. Palomar-Pardave, B.R. Scharifker and E.M. Arce, Electrochimica Acta, 2005, 50(24), 4736-4745.   DOI
34 K. Skrzypczynska, K. Kusmierek and A. Swiatkowski, Int. J. Electrochem. Sci., 2018, 13, 88-100.
35 J.T. Hinatsu and F.R. Foulkes, Can. J. Chem. Eng., 1991, 69(2), 571-577.   DOI
36 D. Yue, Y. Jia and Y. Yao, Electrochimica Acta, 2012, 65, 30-36.   DOI
37 A. Urcezino, L. dos Santos, P. Casciano and J. Braz. Chem. Soc., 2017, 28(7), 1193-1203.
38 A.A. Kityk, V.S. Protsenko and F.I. Danilov, J. Electroanal. Chem., 2013, 689, 269-275.   DOI
39 R. Seeber, C. Zanardi and G. Inzelt, ChemTexts, 2018, 1-18.