Browse > Article
http://dx.doi.org/10.33961/jecst.2019.00199

Enhanced Activity for Oxygen Evolution Reaction of Nanoporous IrNi thin film Formed by Electrochemical Selective Etching Process  

Park, Shin-Ae (School of Mechanical Engineering, Pusan National University)
Shim, Kyubin (Department of Materials Science and Engineering, Pohang University of Science and Technology)
Kim, Kyu-Su (School of Mechanical Engineering, Pusan National University)
Moon, Young Hoon (School of Mechanical Engineering, Pusan National University)
Kim, Yong-Tae (School of Mechanical Engineering, Pusan National University)
Publication Information
Journal of Electrochemical Science and Technology / v.10, no.4, 2019 , pp. 402-407 More about this Journal
Abstract
Water electrolysis is known as the most sustainable and clean technology to produce hydrogen gas, however, a serious drawback to commercialize this technology is due to the slow kinetics in oxygen evolution reaction (OER). Thus, we report on the nanoporous IrNi thin film that reveals a markedly enhanced OER activity, which is attained through a selective etching of Os from the IrNiOs alloy thin film. Interestingly, electrochemical selective etching of Os leads to the formation of 3-dimensionally interconnected nanoporous structure providing a high electrochemical surface area (ECSA, 80.8 ㎠), which is 90 fold higher than a bulk Ir surface (0.9 ㎠). The overpotential at the nanoporous IrNi electrode is markedly lowered to be 289 mV at 10 mA cm-2, compared with bulk Ir (375 mV at 10 mA cm-2). The nanoporous IrNi prepared through the selective de-alloying of Os is promising as the anode material for a water electrolyzer.
Keywords
Water Electrolysis; Oxygen Evolution Reaction; Irni; Nanoporous; Selective Etching;
Citations & Related Records
연도 인용수 순위
  • Reference
1 MS. Dresselhaus and IL. Thomas, Nature., 2001, 414, 332-337.   DOI
2 L. Schlapbach and A. Zuttel, Nature., 2001, 414, 353-358.   DOI
3 BCH. Steele and A. Heinzel. Nature., 2001, 414, 345-352.   DOI
4 VR. Stamenkovic, D. Strmcnik, PP. Lopes and NM. Markovic, Nat Mater., 2017, 16(1), 57-69.   DOI
5 J. Moorhouse, Modern chlor-alkali technology, Willey, New York, 2001.
6 T. O'Brien, TV. Bommaraju and F. Hine, Handbook of Chlor-Alkali Technology, Kluewer Academic/Plenum, New York, 2005.
7 JD. Holladay, J. Hu and DL. King and Y. Wang, Catal Today., 2009, 139(4), 244-260.   DOI
8 I. Katsounaros, S. Cherevko and AR. Zeradjanin and Karl J. J. Mayrhofer, Angew Chem Int Ed., 2014, 53(1), 102-121.   DOI
9 D. Pletcher and FC Walsh, Industrial Electrochemistry. Springer, Germany, 1993.
10 A. Marshall, B. Borresen, G. Hagen, M. Tsypkin and R. Tunold, Energy., 2007, 32(4), 431-436.   DOI
11 TR. Cook, DK. Dogutan, SY. Reece, Y. Surendranath, TS. Teets and DG. Nocera, Chem Rev., 2010, 110(11), 6474-6502.   DOI
12 T. Reier, Z. Pawolek, S. Cherevko, M. Bruns, T. Jones, D. Teschner, S. Selve, A. Bergmann, HN. Nong, R. Schlogl, KJJ. Mayrhofer and P. Strsser, J Am Chem Soc., 2015, 137(40), 13031-13040.   DOI
13 KC. Neyerlin, G. Bugosh, R. Forgie, Z. Liu and P. Strasser, J Electrochem Soc., 2009, 156(3), B363-B369.   DOI
14 T. Reier, M. Oezaslan and P. Strasser, ACS Catal., 2012, 2(8), 1765-1772.   DOI
15 N. Hodnik, P. Jovanovic, A. Pavlisic, B. Jozinovic, M. Zorko, M. Bele, V. S. Selih. M. Sala, S. Hocevar, M. Gaberscek, J. Phys. Chem. C 2015, 119(18), 10140-10147   DOI
16 M. Wohlfahrt-Mehrens and J. Heitbaum, J Electroanal Chem., 1987, 237(2), 251-260.   DOI
17 R. Forgie, G. Bugosh, KC. Neyerlin, Z. Liu and P. Strasser, Electrochem Solid-State Lett., 2010, 13(4), B36-B39.   DOI
18 L. Ma, S. Sui and Y. Zhai, J Power Sources., 2008, 177(2), 470-477.   DOI
19 E. Ortel, T. Reier, P. Strasser, and R. Kraehnert, Chem Mater., 2011, 23(13), 3201-3209.   DOI
20 S. Sui, L. Ma and Y. Zhai, Asia Pac J Chem Eng., 2009, 4(1), 8-11.   DOI
21 T. Reier, HN. Nong, D. Teschner, R. Schlogl and P. Strasser, Adv Energy Mater., 2017, 7(1), 1601275.   DOI
22 T. Nakagawa, CA. Beasley and RW. Murray, J Phys Chem C., 2009, 113(30), 12958-12961.   DOI
23 N. Danilovic, R. Subbaraman, KC. Chang, SH. Chang, Y. Kang, J. Snyder, AP. Paulikas, D. Strmcnik, YT. Kim, D. Myers, VR. Stamenkovic, and NM. Markovic, Angew Chem Intl Ed., 2014, 53(51), 14016-14021.   DOI
24 HN. Nong, L. Gan, E. Willinger., D. Teschner and P. Strasser, Chem Sci., 2014, 5(8), 2955-2963.   DOI
25 W. Hu, H. Zhong, W. Liang and S. Chen, ACS Appl Mater & Interfaces., 2014, 6(15), 12729-12736.   DOI
26 J. Feng, F. Lv, Y. Zhang, P. Li, K. Wang, C. Yang, B. Wang, Y. Yang, J. Zhou, F. Lin, G-C. Wang and S. Guo. Adv Mater., 2017, 29(47), 1703798.   DOI
27 HN. Nong, HS. Oh, T. Reier, E. Willinger, MG. Willinger, V. Petkov, D. Teschner and P. Strasser, Angew Chem Int Ed., 2015, 54(10), 2975-2979.   DOI
28 C. Wang, Y. Sui, G. Xiao, X. Yang, Y. Wei, G. Zou and B. Zou, J Mater Chem A., 2015, 3(39), 19669-19673.   DOI
29 Y. Pi, Q. Shao, P. Wang, J. Guo and X. Huang, Adv Funct Mater., 2017, 27(27), 1700886.   DOI
30 J. Hu, J. Zhang, H. Meng and C. Cao, J Mate Sci., 2003, 38(4), 705-712.   DOI
31 YT. Kim, PP. Lopes, SA. Park, AY. Lee, J. Lim, H. Lee, S. Back, Y. Jung, N. Danilovic, V. Stamenkovic, J. Erlebacher, J. Snyder and NM. Markovic, Nat Commun., 2017, 8(1), 1449.   DOI
32 J. Erlebacher, MJ. Aziz, A. Karma, N. Dimitrov and K. Sieradzki, Nature, 2001, 410(6827), 450-453.   DOI
33 Y. Ding and J. Erlebacher, J Am Chem Soc., 2003, 125(26), 7772-7773.   DOI
34 CCL. McCrory, S. Jung, JC. Peters and TF. Jaramillo, J Am Chem Soc., 2013, 135(45), 16977-16987.   DOI
35 E. Ozer, C. Spori, T. Reier and P. Strasser, ChemCatChem., 2017, 9(4), 597-603.   DOI
36 J. Juodkazytė, B. Sebeka, I. Valsiunas, K. Juodkazis, Electroanalysis, 2005, 17(11), 947-952.   DOI
37 KA. Stoerzinger, L. Qiao, MD. Biegalski and Y. Shao-Horn, J Phys Chem Lett., 2014, 5(10), 1636-1641.   DOI